
This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

1

Road-, Air- and Water-based Future Internet
Experimentation
Project Acronym: RAWFIE

Contract Number:

645220

Starting date: Jan 1st 2015 Ending date: Dec 31st 2018

Deliverable Number and

Title
D4.5 - Design and Specification of RAWFIE Components

Confidentiality PU Deliverable type1 R
Deliverable File D4.5 Date 30.06.2016

Approval Status2 1st and 2nd Reviewer, WP
Leader

Version 1.0

Contact Person Giovanni Tusa Organization IES Solutions
Phone +39 095211640 E-Mail g.tusa@iessolutions.eu

1 Deliverable type: P(Prototype), R (Report), O (Other)
2 Approval Status: WP leader, 1st Reviewer, 2nd Reviewer, Advisory Board

Ref. Ares(2016)3842961 - 22/07/2016

 D4.5 - Design and Specification of RAWFIE Components (b)

2

AUTHORS TABLE
Name Company E-Mail

Giovanni Tusa IES g.tusa@iessolutions.eu

Federica Toscano IES f.toscano@iessolutions.eu

Kostas Kolomvatsos UOA kostasks@di.uoa.gr

Vasil Kumanov EPSILON vasil.kumanov@epsilon-bulgaria.com

Marcel Heckel FRAUNHOFER Marcel.Heckel@ivi.fraunhofer.de

Nikolaos Pringouris HAI priggouris.nikolaos@haicorp.com

Damien Piquet CSEM damien.piguet@csem.ch

Philippe Dallemagne CSEM pda@csem.ch

Lionel Blondè HES-SO lionel.blonde@hesge.ch

Miquel Cantero ROBOTNIK mcantero@robotnik.es

Ricardo Martins MST rasm@oceanscan-mst.com

REVIEWERS TABLE
Name Company E-Mail

Kakia Panagidi UOA kakiap@di.uoa.gr

Kiriakos Georgouleas HAI Georgouleas.Kiriakos@haicorp.com

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

3

DISTRIBUTION
Name / Role Company Level of

confidentiality3
Type of deliverable

ALL PU R

CHANGE HISTORY
Version Date Reason for Change Pages/Sections

Affected
0.1 2016-05-24 Start discussions and preparation of the 2nd version

of the components design (IES internal)
all

0.2 2016-06-08 TOC / Initial version of contents all

0.3 2016-06-16 First round of contributions on components design Section 4

0.4 2016-06-22 New contributions Sections 3 and 4

0.5 2016-06-23 Updated contents Sections 4 and 5

0.6 2016-06-27 Updated contributions and refinements Sections 4 and 5

0.7 2016-06-27 Version for internal review all

0.8 2016-06-29 Version with revisions and comments all

0.9 2016-06-30 Improvements and modifications all

1.0 2016-07-01 Finalisation all

3 Deliverable Distribution: PU (Public, can be distributed to everyone), CO (Confidential, for use by consortium
members only), RE (Restricted, available to a group specified by the Project Advisory Board).

 D4.5 - Design and Specification of RAWFIE Components (b)

4

Abstract:
As a result of the progresses on tasks T4.2, T4.3 and T4.4, a new version of the Design and Specification of RAWFIE
Components deliverable, for the 2nd technical iteration cycle, is released.

Built on the updated list of architectural components and technological decisions presented in the D4.4, on the first
components’ prototype, and especially on the updated requirements’ definition of D3.2, this report presents the updated
design documentation of RAWFIE Architectural tiers, and belonging components. It moves from the conceptual
perspective of the system design in the 1st iteration, to development and operational perspectives, by providing more
details regarding the way the components are, or will be, implemented and deployed.

Keywords:
design, architecture, component, responsibilities, operations, attributes, workflows, interactions, relationships, interfaces,
diagrams, methods, classes, deployment, server, scenarios, physical architecture, service level, scalability, high
availability, failover

 D4.5 - Design and Specification of RAWFIE Components (b)

5

Part II: Table of Contents-
Part II: Table of Contents- .. 5	

List of Figures ... 9	
List of Tables ... 11	

Part III: Executive Summary .. 12	
Part IV: Main Section ... 13	
1	 Introduction ... 13	

1.1	 Scope of D4.5 ... 13	
1.2	 Relation to other deliverables ... 13	

2	 Overview of changes for the second iteration of the design and specifications of RAWFIE
components ... 13	
3	 Physical design of the overall architecture .. 14	

3.1	 Physical infrastructure .. 14	
3.1.1	 Availability, fault tolerance and scalability .. 15	
3.1.2	 Backup strategies .. 15	

3.2	 Deployment of the RAWFIE platform ... 16	
4	 Design and specification of the software components – 2nd iteration 18	

4.1	 Frontend Tier (Web Portal GUI elements) ... 18	
4.1.1	 Overview ... 18	
4.1.2	 Wiki Tool .. 19	
4.1.3	 Resource Explorer Tool .. 20	
4.1.4	 Booking Tool .. 22	
4.1.5	 Experiment Authoring Tool .. 24	
4.1.6	 Experiment Monitoring Tool .. 28	
4.1.7	 System Monitoring Tool ... 32	
4.1.8	 UxV Navigation Tool ... 34	
4.1.9	 Visualisation Tool ... 37	
4.1.10	 Data Analysis Tool ... 41	

4.2	 Middle Tier (Services and Communication components) .. 43	
4.2.1	 Overview ... 43	
4.2.2	 Testbed Directory Service ... 45	
4.2.3	 EDL Compiler and Validator .. 51	
4.2.4	 Experiment Validation Service ... 54	
4.2.5	 Users & Rights Service ... 56	
4.2.6	 Booking Service .. 63	

 D4.5 - Design and Specification of RAWFIE Components (b)

6

4.2.7	 Launching Service .. 69	
4.2.8	 Visualisation Engine ... 77	
4.2.9	 Data Analysis Engine .. 84	
4.2.10	 System Monitoring Service ... 86	
4.2.11	 Accounting Service (FRAU) ... 91	
4.2.12	 Experiment Controller .. 93	

4.3	 Testbed Tier (Testbeds and Resources control components) ... 97	
4.3.1	 Description .. 97	
4.3.2	 Monitoring Manager ... 97	
4.3.3	 Network Controller ... 100	
4.3.4	 Resource Controller (plus Navigation Service sub-component) 103	
4.3.5	 UxV Proximity component ... 107	
4.3.6	 Testbed Manager ... 116	
4.3.7	 Aggregate Manager ... 121	
4.3.8	 UxV Node ... 123	
4.3.9	 AVRO formatted messages and Kafka Schema Registry 131	
4.3.10	 Common Sensors for UxVs .. 133	

5	 Global Sequence diagrams showing main RAWFIE processes .. 135	
5.1	 Registration of Testbed Resources ... 135	
5.2	 Booking Testbed Resources (HAI) .. 137	
5.3	 System Monitoring ... 139	
5.4	 Experiment Execution and Monitoring .. 141	
5.5	 Experiment Measurements Recording ... 143	
5.6	 Authoring and Launching of an Experiment .. 145	
5.7	 Data Analysis ... 147	

6	 Summary and Outlook ... 149	
7	 References ... 150	
8	 Annex ... 150	

8.1	 Abbreviations ... 150	
8.2	 Glossary .. 152	
A .. 152	

Accounting Service .. 152	
Aggregate Manager ... 153	
Avro ... 153	

 D4.5 - Design and Specification of RAWFIE Components (b)

7

B .. 153	
Booking Service .. 153	
Booking Tool ... 153	

C .. 153	
Common Testbed Interface ... 153	
Component ... 153	

D .. 153	
Data Analysis Engine .. 153	
Data Analysis Tool .. 153	

E .. 154	
EDL Compiler & Validator ... 154	
Experiment Authoring Tool ... 154	
Experiment Controller ... 154	
Experiment Monitoring Tool ... 154	
Experiment Validation Service .. 154	

M ... 154	
Master Data Repository ... 154	
Measurements Repository ... 154	
Message Bus .. 154	
Module ... 155	
Monitoring Manager .. 155	

N .. 155	
Network Controller .. 155	

L .. 155	
Launching Service ... 155	

R .. 155	
Resource Controller ... 155	
Resource Explorer Tool ... 155	
Results Repository ... 155	
Resource Specification (RSpec) .. 155	

S ... 156	
Schema Registry .. 156	
Service ... 156	
Slice Federation Architecture (SFA) ... 156	

 D4.5 - Design and Specification of RAWFIE Components (b)

8

Subsystem .. 156	
System ... 156	
System Monitoring Service ... 156	
System Monitoring Tool .. 156	

T .. 156	
Testbed ... 156	
Testbeds Directory Service .. 157	
Testbed Manager ... 157	
Tool .. 157	

U .. 157	
Users & Rights Repository .. 157	
Users & Rights Service .. 157	
UxV ... 157	
UxV Navigation Tool .. 157	
UxV node ... 157	

V .. 157	
Visualisation Engine .. 158	
Visualisation Tool .. 158	

W ... 158	
Web Portal ... 158	
Wiki Tool ... 158	

 D4.5 - Design and Specification of RAWFIE Components (b)

9

List of Figures
Figure 1: Overview of the Physical RAWFIE infrastructure .. 15	
Figure 2: Web Portal – Deployment / Components Diagram .. 18	
Figure 3: Wiki Tool - Class diagram .. 19	
Figure 4: Resource Explorer Tool - Class diagram .. 21	
Figure 5: Booking Tool - Class diagram ... 24	
Figure 6: Experiment Authoring Tool - Class diagram .. 26	
Figure 7: Experiment Authoring Tool – Open and edit an EDL script .. 27	
Figure 8: Experiment Authoring Tool - Create and validate an EDL experiment 28	
Figure 9: Experiment Monitoring Tool - Class diagram .. 29	
Figure 10: Experiment Monitoring Tool – Select experiment .. 30	
Figure 11: Experiment Monitoring Tool – View experiment details ... 31	
Figure 12: Experiment Monitoring Tool – Cancel experiment .. 31	
Figure 13: System Monitoring Tool - Class diagram ... 33	
Figure 14: UxV navigation tool – Class diagram ... 35	
Figure 15: UxV navigation tool – High level sequence diagram .. 36	
Figure 16: Visualisation Tool - Class diagram ... 38	
Figure 17: Visualisation Tool - Sequence diagram ... 40	
Figure 18: Data Analysis Tool – Class diagram ... 42	
Figure 19: Data Analysis Tool – Sequence diagram involving the Data Analysis Tool in the case
of a stream analytic task. ... 43	
Figure 20: Middle Tier Components – Deployment / Components Diagram 44	
Figure 21: Testbed Directory Service – Class diagram .. 48	
Figure 22: Search Resource internal Sequence diagram ... 49	
Figure 23: Testbed Directory Service – Register a new testbed in the platform 50	
Figure 24: Testbed Directory Service - Add a new UxV device into a Testbed facility 51	
Figure 25: Experiment Compiler – Class diagram ... 53	
Figure 26: Experiment Compiler - Sequence diagram ... 54	
Figure 27: Experiment Validator – Class diagram ... 55	
Figure 28: Experiment Validator - Sequence diagram ... 56	
Figure 29: Users & Rights Service - Class diagram ... 57	
Figure 30: Users & Rights Service – Password-based user login ... 58	
Figure 31: Users & Rights Service – X.509 Certificate-based user login 59	
Figure 32: Users & Rights Service – Check user authorisation .. 60	
Figure 33: Users & Rights Service – Check user authorisation .. 62	
Figure 34: Booking Service - Class diagram .. 65	
Figure 35: Booking Service - Overview ... 66	
Figure 36: Booking Service – View bookings of a testbed .. 67	
Figure 37: Booking Service – Add/Edit a booking ... 68	
Figure 38: Booking Service – Approve/Reject booking ... 69	
Figure 39: Launching service – Class diagram ... 73	
Figure 40: Experiment launching Service Overview - Sequence diagram. 74	
Figure 41: Experiment Launching Service - Manual Launch Sequence diagram. 75	
Figure 42: Experiment Launching Service - Scheduled Launch Sequence diagram. 76	
Figure 43: Experiment Launching Service - Cancellation Sequence diagram 77	
Figure 44: Visualisation Engine - Class diagram ... 79	

 D4.5 - Design and Specification of RAWFIE Components (b)

10

Figure 45: Visualisation Engine - Overview .. 80	
Figure 46: Visualisation Engine – Start an experiment visualisation ... 81	
Figure 47: Visualisation Engine - Position Update ... 82	
Figure 48: Visualisation Engine - Update Status of an Experiment ... 82	
Figure 49: Visualisation Engine – Stop an experiment visualisation ... 83	
Figure 50: Visualisation Engine - Replay an experiment ... 83	
Figure 51: Data Analysis Engine - Class diagram .. 85	
Figure 52: Data Analysis Engine – streaming analytic task ... 85	
Figure 53: System Monitoring Service - Class diagram ... 88	
Figure 54: System Monitoring Service – Checking procedure ... 89	
Figure 55: System Monitoring Service – Received health status via message bus 90	
Figure 56: System Monitoring Service – View health statuses .. 90	
Figure 57: Accounting Service – Class diagram ... 92	
Figure 58: Experiment Controller - Class diagram .. 95	
Figure 59: Experiment Controller – Sequence diagram ... 96	
Figure 60: Testbed control, analysis and monitoring– Deployment / Components Diagram 97	
Figure 61: Monitoring Manager – High level class diagram .. 99	
Figure 62: Monitoring Manager – Monitoring sequence diagram .. 100	
Figure 63 - Network Controller Class Diagram .. 102	
Figure 64 – Starts New Experiment Connection Provisioning ... 102	
Figure 65 - Change Connection during an experiment ... 103	
Figure 66: Resource Controller – Class diagram .. 105	
Figure 67: Resource Controller – Sequence diagram ... 106	
Figure 68: UxV Proximity component class diagram ... 110	
Figure 69: UxV Proximity Deployment diagram ... 110	
Figure 70: Sequence diagram - topic subscription at the Proximity component 114	
Figure 71: Proximity component subscription reception and data publication sequence diagram
... 115	
Figure 72: data reception at the proximity component sequence diagram 116	
Figure 73: Testbed Manager – Class Diagram ... 119	
Figure 74:Testbed Manager experiment handling sequence diagram .. 120	
Figure 75: Testbed components monitoring sequence diagram ... 121	
Figure 76: Aggregate Manager – Class Diagram ... 122	
Figure 77: Aggregate Manager- get the list of available resources sequence diagram 122	
Figure 78 – Aggregate Manager allocate resources sequence diagram 123	
Figure 79: Sequence Diagram for “Registration of Testbed Resources” process 136	
Figure 80: Sequence Diagram for “Booking Resource” process .. 138	
Figure 81: Sequence Diagram for “System Monitoring” process .. 140	
Figure 82: Sequence Diagram for “Experiment Execution and Monitoring” process 142	
Figure 83: Sequence Diagram for “Experiment Measurements Recording” process 144	
Figure 84: Sequence Diagram for “Authoring and Launching of an Experiment” process 146	
Figure 85: Sequence Diagram for the “Data Analysis in a streaming scenario” process 148	
Figure 86: Sequence Diagram for the “Data Analysis in a batch scenario” process 148	

 D4.5 - Design and Specification of RAWFIE Components (b)

11

List of Tables
Table 1: List of requirements for an UxV node to be used in RAWFIE 124	
Table 2: Summary of UxVs functions .. 126	

 D4.5 - Design and Specification of RAWFIE Components (b)

12

Part III: Executive Summary
The present document is the second in a series of three documents about RAWFIE platform
components design and specification. As such, it is delivered at the beginning of the second
RAWFIE development iteration cycle.

The report starts with the concepts for the physical infrastructure of RAWFIE. To this end, a
traditional cloud based approach is described together with possible backup strategies, to address
the needs of scalability, high availability and fault tolerance of RAWFIE services.

Further, D4.5 consists of an updated design specification of all components at the different
application tiers. The purpose of the adopted design and specification approach is twofold: to
present and define how the new functionalities expected for the new development cycle iteration
- especially the ones highlighted in the latest requirements’ specification document (D3.2) - will
be implemented, and to observe in depth the data flow and interaction between the components
specified in the deliverable D4.4. As in the previous iteration of the same document (D4.2) UML
is used as design and modelling approach.
While in deliverable D4.2, the design of the several RAWFIE components was presented from a
conceptual perspective, now the focus is on the development and operational perspectives. For
most of the components and where already possible, the provided UML class diagrams are
therefore more accurate, with details about the actual intended implementation of interfaces,
methods and attributes (development perspective).
More, the physical design of the system and the components, and their interactions, is provided
by the mean of UML Deployment and Components diagram (operational perspective), where the
following main RAWFIE servers can be identified:

• Web Application Server (Frontend components)
• Middle Tier Services Server (Middle Tier components and most of the business logic)
• System Monitoring Services Server (all the components related to the envisaged system

monitoring strategies)
• GIS Server (the server that will be in charge of handling and serving geographical maps

and layers)
• Master Data and Users & Rights Repositories Server
• Measurements Repository Server
• Analysis Results Repository Server
• Testbed Components Server
• UxV Node Server (normally, the embedded server onboard of each UxV nodes)

This architectural design document ends with a set of UML sequence diagrams, showing how
several different software components interact and the interfaces are used, in some of the most
relevant RAWFIE processes / use cases.

 D4.5 - Design and Specification of RAWFIE Components (b)

13

Part IV: Main Section

1 Introduction
1.1 Scope of D4.5
This deliverable describes the software and physical design of the components belonging to the
RAWFIE platform architecture. It presents the concepts for the setup of the physical
infrastructure of the platform, the approach for the deployment of the several applications and
components by the mean of UML Deployment and components diagrams, and the software
classes implementing the required functionalities for each component, starting from the updated
list of requirements provided within WP3.

Practically it answers:

• How the requirements defined in D3.2 are translated into software design and, as a
consequence, into implemented functionalities

• Overall understanding of the operational architecture (physical infrastructure,
components’ deployment in different servers and execution environments)

• Detailed, development oriented software design of components
• Components interfaces and interactions in some of the most relevant processes / use cases

(using sequence diagrams)

1.2 Relation to other deliverables
The design of components in D4.5 is elaborated based on the requirements specification
presented in D3.2 – Specification of requirements for the second RAWFIE development cycle.
High level architecture presented in D4.4 provides an input for this deliverable as a general
architectural picture, where relations among components have firstly been identified. The work
in this deliverable takes also into account the outcome of 1st iteration development activities
presented in D5.1 and will guide the work for the 2nd iteration development period which will be
presented in D5.2.
D4.5 is actually expected to provide a deeper architecture analysis and further detailed
descriptions of components and the whole operational architecture. Therefore, the main intention
of this deliverable is to design software classes for the components and illustrate their interfaces,
operations and responsibilities, as well as to specify the way the components will be deployed.

2 Overview of changes for the second iteration of the design and
specifications of RAWFIE components

This chapter shortly summarises the most important changes made in comparison to D4.2

• Physical infrastructure (new Section 3) and physical design (in Section 4) added

 D4.5 - Design and Specification of RAWFIE Components (b)

14

• Global sequence diagrams, highlighting some of the most relevant RAWFIE processes /
use cases (Section 5, this updates the previous, global sequence diagrams presented at the
beginning of D4.2)

• Changes to basically all components design, moving from a conceptual perspective to a
more operational / development oriented design, with updated class diagrams and
components’ specific sequence diagrams

• Link of components’ functionalities with the updated list of requirements from D3.2, for
each component

• Besides the existing components’ updates, the following modifications can be
highlighted:

o New Accounting service added
o New Wiki Tool added
o New Aggregate Manager (SFA related) added
o Testbed Proxy removed
o In the Tetsbed Tier, UxVs section completely re-elaborated, in order to provide

specifications and guidelines, especially to external UxVs owners, on how new
UxVs can be integrated in RAWFIE

3 Physical design of the overall architecture
This section describes the global RAWFIE architecture from a physical design standpoint.
First, a concept of the RAWFIE physical infrastructure is presented, which aims to ensure certain
quality of service levels in terms of High Availability (HA) of the platform to minimise the
possibility of a service downtime, scalability to serve increasing numbers of concurrent requests
that can be served with an acceptable response time, and backup / failover strategies.
Before describing the updated version of the individual software design for each one of the
components, formerly presented in deliverable D4.2 – Design and Specification of RAWFIE
Components (a), we also present the physical design of the platform using Physical UML
diagrams (Deployment and Components diagrams). This way, we specify the different types of
server instances where the components of the RAWFIE tiers will be deployed, the base
technologies adopted and the software execution environments. Through deployment diagrams,
we will also provide a first idea of the main interactions between the components of the different
tiers.

3.1 Physical infrastructure
The physical RAWFIE platform infrastructure, as depicted in Figure 1, is inspired by a
traditional cloud oriented approach, where different server instances, or cluster of servers and
services hosted in the cloud, are used in order to fulfill the high availability, scalability and
failover objectives and strategies.

 D4.5 - Design and Specification of RAWFIE Components (b)

15

Figure 1: Overview of the Physical RAWFIE infrastructure

3.1.1 Availability, fault tolerance and scalability
The capability of the platform to minimise the service downtimes is ensured, according to the
concepts highlighted in Figure 1, by the use of multiple parallel instances of each of the servers
where the services will run in the different tiers: Application Server for the Web Apps (Frontend
tier components), the Middleware Server (Middle Tier components), as well as the GIS Server
(running Geoserver [1]) and the Integration Server (running Confluent [2] and Apache Kafka
Message Bus [3]). This setup should ensure that at least some of the server instances for each
service type, will always available, in case of failures.
In this configuration, the different data repositories (especially the Master Data and
Measurements Data Repositories, see also deliverable D4.4 for reference), are also expected to
be replicated. In the case of the Master Data Repository relational database, a master instance
will support writes, and the replicas will be used to support huge volumes of read requests. In the
case of the NoSQL [4] solution adopted for the Measurements Data Repository, by setting up
different instances for both writes and reads.
The continuous availability of the services and data repositories after a fault, is either
automatically ensured by the remaining servers instances, or manually recovered in a matter of
minutes, in case there is the need to wake up a sleeping instance of a failover server.
As far as the scalability is concerned, Load Balancers components are deployed for the Web
App, the Middleware and the GIS Servers, in order to split the load between several server
instances in case of increase in the processing demand. Also, of special importance will be the
configuration of a cluster of Apache Kafka message brokers, to address the high number of
messages that will need to be served for controlling the UxV devices, and for acquiring sensors
and position measurements, thus ensuring acceptable performance of the whole system, and
safety of the equipment, during the execution of one or more concurrent experiments.
Scalability at the data repository level is ensured by splitting (balancing) the incoming requests
to the different server instances, as well.

3.1.2 Backup strategies
Common and freely available backup solutions may be used, like:

 D4.5 - Design and Specification of RAWFIE Components (b)

16

• the Backup Manager application available on any Linux OS (the reference OS for the
RAWFIE platform deployment)

• the rsync daemon and some configured cronjobs for setting up the time schedule of the
different backups (always available in any Linux OS distribution)

Some of the possible examples of scheduled backup strategies are:
• Full scheduled backup of PostgreSQL database/s every night at 00:00, to a dedicated

backup server
• Full scheduled backup of other repositories every night at 01:00, to a dedicated backup

server
• Full scheduled backup of local disks of each server (including running software services)

every day at 02:00, to a dedicated backup server

3.2 Deployment of the RAWFIE platform
The physical elements listed in the following contribute to the RAWFIE physical architecture.
All these elements will be detailed using UML Deployment diagrams in the subsequent sections
of the document.

• Web Application Server
The server instance/s and the environment where all RAWFIE Frontend tier applications
run. Includes a Java Runtime Environment (JRE), and the Apache Tomcat Servlet
Container [5], where the Web Portal components framework is deployed.

• Middle Tier Services Server
The server instance/s and the environment where all RAWFIE Middle Tier services run.
Include a Java Runtime Environment (JRE), and the Apache Tomcat Servlet Container,
where the components are deployed.

• Integration Server
The server / server instances where the Confluent platform and the Message Bus cluster
are deployed. Include a Java Runtime Environment (JRE).

• GIS Server
The server / server instances where the GIS solutions adopted in RAWFIE (Geoserver
cluster) is deployed. It may include a local PostgreSQL / PostGIS database or will use the
Master Data Repository one, as datasource for storing and serving geographic data as
layers.

• Master Data Repository Server
The server / server instances where the PostgreSQL / PostGIS RAWFIE database is
deployed, together with the LDAP directory (OpenDJ [6]).

• Measurements and Analysis Repositories Server
The server / server instances where the Measurements and Analysis Repositories will be
deployed.

• System Monitoring Server
The server / server instances where the System Monitoring Services and applications run
(Icinga Web GUI [7], monitoring DB, JNRPE [8] plugin and System Monitoring
Service).

 D4.5 - Design and Specification of RAWFIE Components (b)

17

• Testbed
Testbed services/components will run on their dedicated HW located at the various
remote testbed facilities. Most of the testbed services are expected to run as standalone
processes

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

18

4 Design and specification of the software components – 2nd
iteration

4.1 Frontend Tier (Web Portal GUI elements)

4.1.1 Overview
Web Portal represents the central user interface that provides access and links to most of the
RAWFIE tools/services enabling end-users to interact with the platform through the use of a web
browser. Web Portal is also responsible for the management of users, access rights and login
credentials. A UML Deployment Diagram of Web Portal components and their interactions with
Middle Tier and Data Tier components is presented in Figure 2.Error! Reference source not
found.

 D4.5 - Design and Specification of RAWFIE Components (b)

19

Figure 2: Web Portal – Deployment / Components Diagram

4.1.2 Wiki Tool
All kinds of documentation relating to the RAWFIE system will be managed by the Wiki Tool.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-
WEB-P-
003
(HIGH)

A tutorial or similar type of
documentation shall be provided
to the users of the platform

The Wiki Tool will be used to manage all
manuals, documentation and other
information (e.g. extended descriptions of
testbeds and UxVs) about the RAWFIE
system.

Responsibilities

• Manage information about
o Manuals (e.g. of RAWFIE tools)
o Technical documentation (e.g. architecture of RAWFIE or technical requirements

of UxVs)
o Other information (e.g. extended descriptions of testbeds and UxVs)

• Provide static links to content pages (for linking by other tools)
• Allow editing by authorised users

Operations and attributes
A third party application will be used to realise the Wiki Tool (e.g. MediaWiki4). Beside the
HTTP/HTML interface for displaying, no special operations are foreseen.

Figure 3: Wiki Tool - Class diagram

Interactions and relationships with other components

4 https://www.mediawiki.org

 D4.5 - Design and Specification of RAWFIE Components (b)

20

Provided Interfaces
• HTTP/HTML interface for displaying and linking of pages by other tools

4.1.3 Resource Explorer Tool
Via the Resource Explorer Tool, the experimenter can discover and select available testbeds as
well as resources inside a Testbed that she/he will utilize to build future experiments.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with
component’s functionalities

PT-REE-T-001
(HIGH)

The UI interface shall illustrate
testbed and UxV information of
the RAWFIE federation that the
experimenters should take
advantage of

The pages of the IndexPage,
ResourcePage and TestbedPage visualise
the information

PT-REE-T-002
(LOW)

Registration of testbeds and UxVs
may be possible via the Web Portal

EditTestbed and EditResourcePage can
be used to add and edit testbeds and
UxVs

PT-REE-T-003
(MEDIUM)

RAWFIE platform should provide
a Resource Discovery tool for
fine-grained resource searches

The SearchPage will provide a search
form and results list

PT-REE-T-004
(MEDIUM)

Link to the Booking Tool should
be provided

ResourcePage will provide a link to the
Booking Tool, so that the current UxV
can be booked.

Responsibilities
The main responsibilities of the Resource Explorer Tool are:

• Visualise Data from the Testbeds Directory Service
• Provide ability to search and select available resources inside a testbed
• Add and edit testbeds and UxVs

Operations and attributes
The Resource Explorer Tool provides several web pages to interact with the Testbeds Directory
Service. A search page is provided to let the user search for resources that meet his requirements.
Specific details of Testbeds and UxVs could be viewed on the details web pages. Adding and
editing of Testbeds and UxVs could be done via the edit web pages.

 D4.5 - Design and Specification of RAWFIE Components (b)

21

Figure 4: Resource Explorer Tool - Class diagram

The Resource Explorer Tool mainly interacts with the Testbeds Directory Service. Please see the
section about the Testbeds Directory Service for a more detailed description. Additionally, the
ResourcePageController can call the BookingTool to directly book the selected resources.

Interactions and relationships with other components
Provided Interfaces

• Web portal GUI:
Used by the Experimenters to find appropriate Testbeds and UxVs. Used by the Testbed
Operators to maintain (add, edit, delete) data about Testbeds and UxVs.

Required Interfaces
• Testbeds Directory Service Interface:

Read the resource data for visualisation, add and edit data
• Booking Tool:

Redirect user (in the browser) to the booking tool, to start booking of the selected
resources

 D4.5 - Design and Specification of RAWFIE Components (b)

22

4.1.4 Booking Tool
The booking tool provides the front-end that allows a potential user/experimenter to reserve
resources to selected Testbeds for a specified period (slice) of time. Booking of resources by the
experimenter is a prerequisite in order to be able to assign them later on to an authored
experiment (experiment level reservation) and proceed with launching of the actual experiment.
In the following section and throughout this document, the terms booking and reservation should
be considered interchangeable.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping

PT-BOO-T-001
(HIGH)

Booking Tool should allow
booking of resources at the
experimenter level for a specified
period and for selected resources

Mapped by design
(CalendarViewPage will provide
initial selection of time slices while
CreateBookingPage allows for
selection of resources (see also PT-
BOO-T-004)

PT-BOO-T-002
(HIGH)

Booking Tool functionality shall
be compatible with the SFA
myslice architecture and the
notion of slices reservations

Not addressed - It will be investigated
in the next iteration

PT-BOO-T-003
(HIGH)

Booking Tool should delegate all
its actions related to Booking of a
resource to the Booking Service

Mapped By design (see class
diagram)

PT-BOO-T-004
(HIGH)

Booking Tool shall also interact
with the Testbeds Directory
Service in order to retrieve
information on unallocated
testbed resources

Mapped by design
(CreateBookingPage interacts with
Testbed Directory Service, see class
diagram)

PT-BOO-T-005
(HIGH)

Booking Tool should
communicate with the underline
services using JSON formatted
messages (through an RPC or
REST API)

Implementation specific (Booking
Service will provide an RPC interface
enabling communication via Avro
JSON messages)

PT-BOO-T-006
(HIGH)

Booking Tool should provide
appropriate functionality for
viewing the reservations of a
user/experimenter

Fulfilled by existence of
CalendarViewPage

PT-BOO-T-007
(HIGH)

Booking Tool should allow
editing of existing Reservations

Fulfilled by existence of
EditBookingPage

PT-BOO-T-008
(HIGH)

Booking Tool should allow
cancellation of existing
Reservations

Fulfilled by existence of
CancelBookingPage

PT-BOO-T-009
(HIGH)

Booking Tool should allow
creation of bookings through an
intuitive UI interface

Fulfilled by existence of
CreateBookingPage

PT-BOO-T-010
(HIGH)

Appropriate notification
mechanism should be provided to

A booking (reservation) status field
will be included in every booking

 D4.5 - Design and Specification of RAWFIE Components (b)

23

the user in case status of
reservation request is not directly
available.

response message which should be
visible in the UI (CalendarViewPage
and/or BookingDetailsPage)
See also Booking Service section

PT-BOO-T-011
(MEDIUM)

Booking Tool may provide
assistance of feedback to the
potential experimenter during the
booking process

It will not be addressed in this
iteration and will be investigated in
the next iteration cycle

PT-BOO-T-012
(HIGH)

Booking functionality should
provide means to ensure fairness
in resource booking as well as
protect for malevolent actions that
a user may perform.

Not applicable - it should be
considered by the Booking Service

Responsibilities
The main responsibilities of the Booking Tool are:

• To provide intuitive overview visualization (i.e. via a calendar like view) of existing user
reservations (bookings) in the RAWFIE platform

• To allow for initiation of reservation requests for one or multiple resources in a specific
period of time (in one or more testbeds)

• To allow modification (editing) of existing reservations
• To allow cancellation (removal) of existing reservations
• To provide details on a selected reservation including its status
• To allow approval or rejection of Bookings request by a testbed administrator role

Operations and attributes
The Booking Tool provides a set of web pages, available to all registered users and potential
experimenters, allowing the visualization (via a calendar view) of all the reservations for a
specific testbed and its UxVs resources. Details of a booking could be viewed in an extra page.
The tool also provides the ability to add a new booking, as well as edit or remove existing ones.
There are also pages restricted to testbed administrator that can be used for approving or
rejecting a booking request initiated by a platform user.
Booking of a resource(s) generally creates a request for the Booking Service. The request may
not return a synchronous response concluding the acceptance or rejection of the booking but
rather put the request in a pending status until a platform administrator, decides whether the
request can be fulfilled or not. Therefore, all booking responses are expected to return an
appropriate status, which should be visible by the user either in the calendar view or in the
booking details view.
Since the booking tool will delegate all its actions to the Booking Service (see related section)
for further processing, in this section we present a simple UML class like diagram showing
mainly the available pages and the interfaces with other RAWFIE elements. The reader should
refer to the corresponding Booking Service section for more detailed information on how the
RAWFIE user level booking process works.

 D4.5 - Design and Specification of RAWFIE Components (b)

24

Figure 5: Booking Tool - Class diagram

Interactions and relationships with other components
Provided Interfaces

• Web portal GUI: Used by the users (Experimenter)
Required Interfaces

• Booking Service: Read the bookings for visualisation, add and edit bookings
• Testbed Directory Service: to retrieve not booked resources during initial selection for

creation of a new reservation

4.1.5 Experiment Authoring Tool
The Experiment Authoring Tool is responsible to provide functionalities to the experimenters
that are related to the definition of experiments by using the EDL. Two editors are provided: the
textual and the visual editors. These editors incorporate all the necessary functionalities as those
found in typical IDEs as well as functionalities related to the compilation and validation of the
defined experiments.

 D4.5 - Design and Specification of RAWFIE Components (b)

25

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping

PT-EXA-T-001
(High)

Experiment Description Language
(EDL) shall be used as a language
for the definition of experiment
scenarios

The EDL model is already in
place

PT-EXA-T-002
(High)

The EDL should allow the
definition of all necessary
requirements for an experiment

The EDL model offers the
necessary terminology

PT-EXA-T-003
(Medium)

For each defined experiment
specific metadata, i.e. name,
version, date and description shall
be defined

The EDL model offers the
necessary terminology

PT-EXA-T-004
(High)

An experimenter shall be able to
provide initial conditions and/or
configuration parameters for an
experiment

The EDL model offers the
necessary terminology

PT-EXA-T-005
(High)

An experimenter shall be able to
manage/guide the available booked
resources during experiment
authoring

The EDL model offers the
necessary terminology

PT-EXA-T-006
(Medium)

An experimenter shall be able to
define the type of information to
be gathered and/or stored by UxV
resource(s)

The EDL model offers the
necessary terminology

PT-EXA-T-007
(Medium)

An experimenter shall be able to
define the type of metrics to be
gathered and/or stored during an
experiment and/or per UxV
resource

The EDL model will offer the
necessary terminology

PT-EXA-T-008
(High)

An experimenter shall be able to
provide navigation or movement
directives during experiment
authoring

The EDL model offers the
necessary terminology
The Textual editor also supports
this functionality

PT-EXA-T-009
(High)

An experimenter should be able to
provide formation information for
a group of UxVs resources

The EDL model offers the
necessary terminology
The Textual editor also supports
this functionality

PT-EXA-T-010
(High)

A textual editor shall be provided
for the authoring of RAWFIE
experiments

The Textual editor is already in
place

PT-EXA-T-011
(High)

A visual/graphical editor shall be
provided for the authoring of
RAWFIE experiments

The Visual editor is already in
place

 D4.5 - Design and Specification of RAWFIE Components (b)

26

PT-EXA-T-012
(High)

Platform shall allow saving,
editing and/or deletion of an
experiment defined via EDL

The Textual/Visual editor offers
this functionality

PT-EXA-T-013
(High)

The visual editor should allow the
definition of movement and
location waypoints from a map

The Visual editor offers this
functionality

PT-EXA-T-014
(Medium)

During authoring of an experiment
selection of resources should be
limited only to the ones previously
reserved from the user at the
foreseen time of experiment

The Textual/Visual editor offers
this functionality

PT-EXA-T-015
(High)

Validation of EDL script should be
possible prior to or during saving

The Textual/Visual editor offers
this functionality

Responsibilities
The main responsibilities of the Experiment Authoring Tool are:

• Support for experiment definition through the Experiment Definition Language (EDL).
• Provision of a textual EDL editor.
• Provision of a visual EDL editor.
• Support for the textual and visual editor synchronisation.
• Support of typical file management commands like saving, opening, etc.
• Provision of hooks to the compiler, the validator and the experiment launcher.
• Short-term launching to start an experiment manually

Operations and attributes

Figure 6: Experiment Authoring Tool - Class diagram

Open and edit an EDL script

1. User accesses the Experiment Authoring Tool through the web GUI
2. User clicks on the File Management Element to open a saved EDL script
3. User uses the textual editor to edit and update the script
4. Through File Management Element user saves the modifications to EDL repository

 D4.5 - Design and Specification of RAWFIE Components (b)

27

Figure 7: Experiment Authoring Tool – Open and edit an EDL script

Create and validate an EDL experiment

1. User opens the Textual and Visual editors to define an EDL experiment
2. User starts writing an experiment by using the EDL specific commands
3. Both editors will be synchronized
4. The compilation of the EDL script is performed by using the EDL Compiler and

Validator service
5. The compilation results (errors and warnings) are displayed to the user through the

editors
6. User corrects the errors
7. The user validates the experiment by using the Experiment Validation Service
8. The Experiment Validation Service returns through the editors the respective errors and

warnings
9. The user corrects the errors
10. The compilation and validation is an iterative process that ends when all the errors being

corrected
11. The experiment script is saved to the Experiment and EDL repository
12. The user launches the experiment manually through the launching element
13. The launching element triggers the respective launching service

 D4.5 - Design and Specification of RAWFIE Components (b)

28

Figure 8: Experiment Authoring Tool - Create and validate an EDL experiment

Interactions and relationships with other components
Provided Interfaces

• Web portal GUI:
Used by the experimenter to access the Experiment Authoring Tool

Required Interfaces
The Experiment Authoring Tool requires interfaces from the following backend services:

• EDL Compiler and Validator Service: perform compilation, recognize syntactic errors
and warnings and generate the appropriate code

• Experiment Validation Service: perform the experiment validation (efficient experiment
execution in the respective testbed)

• Experiment and EDL Repository: request saved EDL scripts, EDL language elements,
store EDL script

• Launching service: request interface to set the appropriate launching time the experiment
to be performed

4.1.6 Experiment Monitoring Tool
Experiment Monitoring Tool collects and displays the information regarding experiments the
resources used by them.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with
component’s functionalities

PT-EXM-T-001
(HIGH)

A RAWFIE user should be able
to view an overview of his/her
experiments

The ExperimentSelectionPage shows all
experiments of the logged-in user

PT-EXM-T-002
(MEDIUM)

Experiment Monitoring and
Visualisation should be

To be defined during the second iteration

 D4.5 - Design and Specification of RAWFIE Components (b)

29

integrated
PT-EXM-T-003
(MEDIUM)

Cancellation of running
experiments should be possible
via Web Portal

The ExperimentStatusPage will provide a
button to cancel an experiment.

Responsibilities
The main responsibilities of the Experiment Monitoring Tool are:

• Show status of experiments (filtered by user rights)
• Show status of resources (filtered by experiments & user rights)
• Stopping/cancelling an experiment
•

Operations and attributes
The logged-in user can first select the experiment of interest from a list of experiments, on which
he has appropriate rights. On the “ExperimentStatusPage” the status information of the selected
experiment will be displayed.
The ExperimentMonitoringController will collect and prepare the data for displaying in the web
page. For this, it communicates with the System Monitoring Service, the Experiment Controller,
the Experiments & EDL Repository and the Measurements, Results & Status Repository.

Figure 9: Experiment Monitoring Tool - Class diagram

Select experiment

1. The user opens the experiment selection page at the Experiment Monitoring Tool
2. The ExperimentSelectionPageController asks ExperimentStatusManagement for the list

of experiments of the current user
3. ExperimentStatusManagement loads the experiment list from the Master Data Repository

 D4.5 - Design and Specification of RAWFIE Components (b)

30

4. The ExperimentSelectionPageController updates the ExperimentSelectionPage with the
list

5. ExperimentSelectionPage is shown to the user from where he selects an experiment to get
more details

6. The user selects an experiment and the status is loaded (see sequence “Get experiment
status”)

7. The ExperimentStatusPage is shown to the user.

Figure 10: Experiment Monitoring Tool – Select experiment

Get experiment status

1. The user requests the status of the experiment
2. The ExperimentStatusPageController requests the data from the

ExperimentStatusManagement
3. ExperimentStatusManagement queries the experiment details

a. Static details of the experiment are loaded from the Master Data Repository
b. Status of the experiment are loaded from the Master Data Repository

4. The UxVs statuses are queried from the System Monitoring Service
5. The Testbed statuses are queried from the System Monitoring Service
6. ExperimentStatusPage is updated with the collected data and shown to the user

 D4.5 - Design and Specification of RAWFIE Components (b)

31

Figure 11: Experiment Monitoring Tool – View experiment details

Cancel experiment

1. On the experiment status page, the user clicks on the “Cancel” button
2. The ExperimentStatusPageController calls the ExperimentStatusManagement
3. ExperimentStatusManagement forwards the request to the Launching Service that

executes the necessary steps to cancel the experiment

Figure 12: Experiment Monitoring Tool – Cancel experiment

Interactions and relationships with other components
Provided Interfaces

• Web portal GUI:
Used by the users (Experimenter, Testbed Operator) to get status information about
experiments or to cancel experiments.

 D4.5 - Design and Specification of RAWFIE Components (b)

32

Required Interfaces
• System Monitoring Service:

Get status information about involved testbeds and UxVs.
• Master Data Repository

Query the experiments of a user.
Query information about the experiment status.

• Experiment Controller:
To cancel an experiment the Experiment Controller is called to execute the necessary
steps.

4.1.7 System Monitoring Tool
Shows the status and the readiness of the various RAWFIE services (mainly the ones residing in
the middle tier)

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-SYM-
T-001
(HIGH)

Listing and/or visualisation of
current system health status shall
be available.

StatusDashboardPage and also the third party
Icinga Web provide this functionalities

PT-SYM-
T-002
(MEDIUM)

The current system health status
should be grouped thematically.

StatusDashboardPage will do this in future

PT-SYM-
T-003
(MEDIUM)

Filtering of the accessible
component health statuses by user
roles/rights should be possible.

StatusDashboardPage will do this in future

PT-SYM-
T-004
(MEDIUM)

The health statuses webpage
should be updated automatically.

StatusDashboardPage and also the third party
Icinga Web provide this functionalities

Responsibilities
The main responsibilities of the System Monitoring Tool are:

• Show detailed status of RAWFIE system infrastructure (for administration)
o Highlight potential problems

• Show simplified status dashboard (for normal users)
• Configure System Monitoring Service (for administration)

o Monitoring parameters
o Notifications on potential problems (e.g. via email)

Operations and attributes
The System Monitoring Tool loads all its information from the System Monitoring Service and
displays them in an appropriate way.
The third party application Icinga Web will display detailed status information for Platform
Administrators. The simplified StatusDashboardPage will be public available to all RAWFIE
users to get informed about the system state.

 D4.5 - Design and Specification of RAWFIE Components (b)

33

Figure 13: System Monitoring Tool - Class diagram

The System Monitoring Tool only interacts with the System Monitoring Service. Please see
section about the System Monitoring Service to get a more detailed description.

Interactions and relationships with other components
Provided Interfaces

• Web portal GUI:
Used by the users (Experimenter, RAWFIE Platform Administrator) to get system status
information

• Icinga Web:
RAWFIE Platform Administrator use this to get detailed system status information

Required Interfaces

 D4.5 - Design and Specification of RAWFIE Components (b)

34

• System Monitoring Service:
Reads the system status from the middleware service for visualisation in the appropriate
web pages

4.1.8 UxV Navigation Tool
This component will provide to the user the ability to remotely navigate a squad of UxVs. The
UxV Navigation Tool will provide the ability to non-expert users to remotely guide a squad of
robotic vehicles to perform basic navigation missions such as waypoint navigation, map
construction, area surveillance and path planning.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with
component’s functionalities

PT-NAV-T-001
(HIGH)

This component will provide to
the user the ability to remotely
navigate a squad of UxVs
through a user friendly
interface.

Instuctions_Manager will do at the
second integration of development

PT-NAV-T-002
(HIGH)

This tool provides some basic
validation of the user’s
instructions

Instuctions_Manager

PT-NAV-T-003
(HIGH)

UxV Navigation Tool should
be available for the navigation
of all moving resources.
Real time navigation may be
restricted by the
communication technology of
the UxV data transmission.

Instuctions_Manager will at the
second integration of development

PT-NAV-T-004
(HIGH)

UxV Navigation Tool should
be available to read from the
database a detailed version of
the map of the available areas

Initialization will do at the second
integration of development

Responsibilities
The main responsibilities of the UxV Navigation Tool are:

• Guides the vehicles using a turn based navigation mechanism
• Collects data from their equipped sensors.

 D4.5 - Design and Specification of RAWFIE Components (b)

35

Operations and attributes

Figure 14: UxV navigation tool – Class diagram

Initialization of the Experiment:

1. Through the user interface, the experimenter or RAWFIE administrator specifies the
required details of the experiment, providing information regarding the number of the
vehicles, the type of the units as well as information regarding the required sensors.	

2. The initialization class prepares an appropriate file and informs the Experiment
Controller about the requirements. 	

3. The Experiment Controller interacts with the UxV Navigation Tool and informs the
component about the availability of the equipment and the feasibility of the experiment.	

Remote Control
After the initialization of the experiment, the virtual controller will allow the experimenter to
guide the vehicles using a turn based navigation mechanism and to collect data from their
equipped sensors.

1. Through the provided interfaces, users specify the next desired location for each unit. 	
2. The instructions manager class translates these instructions into a JSON file and transmits

this file to the Experiment Controller. 	
3. When all the vehicles reach their desired position, the UxV Navigation Tool is ready to

accept a new set of instructions.	

 D4.5 - Design and Specification of RAWFIE Components (b)

36

Figure 15: UxV navigation tool – High level sequence diagram

Interactions and relationships with other components

Provided Interfaces

• Web portal GUI:
Used by the users (Experimenter, Testbed Operator) to get instructions.

Required Interfaces

• Experiment Controller Interface: So as to initialize the experiment and to transfer the
user's instructions	

• Experiment Monitoring Tool Interface: Although there is no direct connection between
these two components, the Experiment Monitoring Tool is required so as to inform the
experimenter about the current status of the experiment. Additionally, Experiment
Monitoring Tool is responsible for the cancellation of an experiment. Experiment
Controller is responsible for transferring messages between these two components.

 D4.5 - Design and Specification of RAWFIE Components (b)

37

4.1.9 Visualisation Tool
The Visualisation Tool provides visualisation of the geospatial data of a running experiment.
Additionally it enables the user to show and track all UxV resources and to apply additional
modifications (layers, filters, etc.) to the geospatial data and to show different sensor data, GPS
coordinates and others.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-VIS-T-
001
(HIGH)

The Visualisation Tool shall allow
the visualisation of information
about the running experiments, in
tabular/graphical form

When Start Visualisation is initiated, the
experiment will be visible

PT-VIS-T-
002 (LOW)

A 3D visualization should be
available for the tracking of all
moving resources

Moving the camera provides 3D view

PT-VIS-T-
003 (LOW)

The Visualisation Tool may allow
visualisation of video streams
coming from the experiment, and
experiment’s camera control

Launching a widget if this option is available
on the UxV will show the video stream

PT-VIS-T-
004
(MEDIUM)

The Visualisation Tool shall
provide access to information /
features associated to each UxV
device on the geographic map

When clicking on a vehicle, its
information/features will be visible in a
widget

PT-VIS-T-
005
(MEDIUM)

The Visualisation Tool shall allow
organization and manipulation of
multiple geographic layers

A button similar to the one for switching
external providers, will give the option to
switch between layers

PT-VIS-T-
006
(MEDIUM)

Possibility of
Adding/Removing/Updating
graphical widgets should be
provided

Widgets can be opened and closed with a
mouse click

PT-VIS-T-
007
(MEDIUM)

Possibility to display both actual
and expected UxVs’ route and
position should be provided

When experiment is started, both routes and
position are visualised

Responsibilities
The main responsibilities of the visualisation tool are:

• Visualise a running experiment by presenting the UxVs on a map and show their
movement	

• Provide an option to add additional layers on top of the current map in order to
show/hide/highlight different information during the execution of the experiment	

• Provide an option to add/remove different widgets with information about the
experiment, the UxVs, the landscape and others	

• Plot a summary when the experiment is over, showing statistics about the experiment	

 D4.5 - Design and Specification of RAWFIE Components (b)

38

• Change camera position by setting different point of view, angle or camera movement 	

Operations and attributes
In this part of the description an abstract high level class diagram of the visualisation tool (VT) is
presented that will be in the front end tier, and will work closely with visualisation engine (VE)
that will reside in the middle tier.

Figure 16: Visualisation Tool - Class diagram

The VT has the following tasks:

• Handle experimenter requests for manipulating the geo information data. These requests
will be sent to the VE over the Websocket (WSSteam and WSData channels), but the
response will be received over the GIS (Map) channel. These manipulations include
moving the map, panning, tilting, zooming etc. and also showing/hiding different layers
like thermal layers, roads, obstacles and others	

• Handle experimenter requests for camera manipulation. They will be handled internally
without sending requests to the VE	

• Handle experimenter requests for showing/hiding widgets on the screen. These widgets
can represent speed of UxVs, GPS positions, different sensor data and other information.
This data will be received from the VE over the websocket	

• Convert the geo information data in the appropriate format for visualising by the web
map library	

• Plot the whole information in the browser window appropriately in an easily
understandable manner in order to allow the experimenter to properly and successfully
execute the experiment 	

The sequence diagrams below provide information about the data flow and the interaction
between the different components.

 D4.5 - Design and Specification of RAWFIE Components (b)

39

Start the Visualisation Tool:
1. The experimenter chooses from the web portal to start the VT	
2. The VT registers at the VE and is ready to receive information about a running or past

experiment	
3. The experimenter can choose to start the VT or to not use it during an experiment and

decide to visualize it later on.	

User updates the desired location of the UxV

1. The Experiment Controller sends the updated waypoints to the Engine Controller	
2. The waypoints are converted to layers by the GISServer and the Database and the new

layer is sent to the VT	
3. The new layer is plotted by the Renderer	
4. The experimenter can see on the map what (s)he defines as next position of the UxV in

the UxV Navigation Tool and how the UxV will get there by visualising the waypoints.	

The experimenter adds/removes/updates widgets

1. The experimenter directly edits the widgets in the browser window. This generates a
request to the GUI to update the widgets	

2. The information about the new widgets is sent to the renderer, which plots them on the
screen	

3. The user can adjust the information on the screen based, on the requirements and the
current scenario.	

The experimenter changes the position of camera

1. The experimenter updates the position of the camera directly in the browser window,
which generates a request in the Camera	

2. The Camera updates the positions and sends the new parameters to the Renderer, which
then adjusts the positon of the experiment's camera. 	

3. The user can then match the view of the VT to hers/his requirements.	

 D4.5 - Design and Specification of RAWFIE Components (b)

40

Figure 17: Visualisation Tool - Sequence diagram

Interactions and relationships with other components
Required interfaces:

• The GIS interface is used to send geographical information in various formats like WMS,
WFS, WPS and WCS from the VE to the VT. The VT requests map information over the
websocket and the geo-information data is sent over the GIS interface.

• The websocket is used in both directions to retrieve information like sensor data from VE
to VT or to inform the VE that the experimenter changed a layer in the VT and it needs to
be reloaded from the VE.

 D4.5 - Design and Specification of RAWFIE Components (b)

41

Provided interfaces:
• The VT has interface to the experimenter through a web-browser, allowing it to receive

commands from a mouse or keyboard and to manipulate the layout of the visualisation
like switching on/off widgets/layers/maps etc.

4.1.10 Data Analysis Tool
The Data Analysis Tool is the child-component of the Web Portal through which the user is able
to use functionalities provided by the Data Analysis Engine as well as being able to access data
sets stored in the different data repositories. By having access to the available data through the
Data Analysis Tool, the user can browse the available data and select the tables/data structures
on which he wants his analytics subroutines to be executed. The latter are also designed through
the Data Analysis Tool since it acts like a user interface of the Data Analysis Engine. Through it
the user not only gains access to the data coming from the data source/sources, but also enables
access and selection of results from previously executed jobs, which can afterwards be involved
in other data analysis jobs.

Component requirements as identified in D3.2

ID (Priority) Description Requirement Mapping with

components functionalities
PT-DAA-T-
001
(Medium)

Analysis tool will provide
interface to data engine

All the parameters selected by the user
through the interface provided by the Data
Analysis Tool (schemas, fields, models,
etc.) will enable the Data Analysis Engine
to compile this information into an
analytics task.

PT-DAA-T-
002
(Low)

Analysis tool will provide access
to past experiments

The Graphite dashboard will be integrated
in the tool, enabling visualization of
results contained in the results repository.

PT-DAA-T-
003
(Medium)

Analysis tool will provide ability
to query message bus streams

The tool will provide the ability to query
the schema registry in the message bus.
The desired available schemas can then be
specified as parameters in any data
analysis task definition.

PT-DAA-T-
004
(Medium)

Analysis tool will provide
interface to end running jobs

The tool will provide the ability to send a
kill signal for a specified running task
which will interrupt the associated task's
execution.

PT-DAA-T-
005
(Medium)

Analysis tool will provide a
simple metric selection interface, a
view of the result stream and the
job status tab

The tool will provide task parameter
selection forms, a Graphite dashboard
integration and a Spark job-tracker page
integration.

Responsibilities
The main responsibilities of the Data Analysis Tool are:

 D4.5 - Design and Specification of RAWFIE Components (b)

42

• Browse data and results originating from previous analytics tasks
• Select data subject to further analysis
• Enable the design of data analysis jobs to be relayed to the Data Analysis Engine which

will perform the execution of the data analytics tasks specified.

Operations and attributes
The class diagram of Data Analysis Tool is presented in Figure 18.	

Figure 18: Data Analysis Tool – Class diagram

 D4.5 - Design and Specification of RAWFIE Components (b)

43

Figure 19: Data Analysis Tool – Sequence diagram involving the Data Analysis Tool in the case of a stream

analytic task.

4.2 Middle Tier (Services and Communication components)

4.2.1 Overview
Middle Tier services provide most of the business logic needed to serve the users’ request
coming from the Frontend Tier, to get access to the data repositories on the Data Tier, and for the
interaction with the Testbed Tier software components through the Message Bus. The UML
Deployment Diagrams of the Middle Tier components, showing the servers and the execution
environments for the deployment of Middle Tier services, together with their interaction with the
Web Portal components, the Testbed components, the GIS Server, and the Data Repositories, is
shown in Figure 20 below.

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

44

Figure 20: Middle Tier Components – Deployment / Components Diagram

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

45

4.2.2 Testbed Directory Service
Component requirements mapping, as identified in D3.2

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-DIR-S-001
(HIGH)

The Testbed Directory
Service shall provide
access to information on
all Testbeds registered in
RAWFIE

getTestbeds REST interface provides access
to information about testbeds registered in
RAWFIE

PT-DIR-S-002
(MEDIUM)

The Testbed Directory
Service should provide
access to information on
all Testbeds registered in
RAWFIE according to
predefined filters

getTestbeds REST interface provides access
to information about a list of registered
testbeds by their ids

getTestbeds REST interface will provide
access to information about a list of testbeds
by other predefined search criteria such as:

• available resources type/s
• location

PT-DIR-S-003
(HIGH)

The Testbed Directory
Service shall provide
access to information
about available resources
(UxVs) belonging to the
testbeds registered in
RAWFIE

getResources REST interface provides access
to information about:

• all resources
• resources belonging to a list of

testbeds (by testbed ids)

PT-DIR-S-004
(MEDIUM)

The Testbed Directory
Service should provide
access to information on
available resources
(UxVs) belonging to the
testbeds registered in
RAWFIE, and according
to predefined filters

getResources REST interface will provide
access to:

• information about a list of resources
by other predefined search criteria and
capabilities such as:

o resources type/s
o resources status
o sensor / measurements types

available
o other to be still defined

The interface will require to define the search
criteria and search value as input parameters

PT-DIR-S-005
(HIGH)

The Testbed Directory
Service shoud provide
the possibility to register
new testbeds in the
RAWFIE platform,as
well as to unregister

createTestbed REST interface allows the
registration of a new Testbed, by providing in
input the Testbeds information structure

deleteTestbed REST interface provides the
possibility to delete a Testbed, by its testbed

 D4.5 - Design and Specification of RAWFIE Components (b)

46

(delete) testbeds from
the platform

id

PT-DIR-S-006
(MEDIUM)

Some basic query
capabilities should be
provided

searchResource REST interface
will provide the possibility to search for a
resource or a list of resources according to
given predefined search criteria such as:

• testbed id
• resources type/s
• resources status
• sensor / measurements types available
• keywords in description
• other to be still defined

searchtestbed REST interface will provide the
possibility to search for a testbed or a list of
testbeds according to given predefined search
criteria such as:

• testbed ids
• available resources type/s
• keywords in description
• other to be still defined

PT-DIR-S-007
(HIGH)

The Testbed Directory
Service shall provide the
possibility to register
new resources belonging
to a specific testbed in
the RAWFIE platform,
as well as to unregister
(delete) resources

createResource REST interface allows the
registration of a new Resource, by providing
in input the Testbed id and the resource
information structure

deleteResource REST interface provides the
possibility to delete a resource

The Testbed Directory Service is basically a registry service of the middleware tier, where all
the integrated testbeds and resources accessible from the RAWFIE facilities can be registered,
deleted, modified or listed.

Responsibilities
The main responsibilities of the Testbeds Directory Service are:

• Provide access to the information (about testbeds and associated resources), contained in
the corresponding Master Data Repository, to other components

• Provide the available testbeds list and their status (free, booked, in use, and so on).
• Show the available resources within a given testbed and at their status (free, booked, in

use, not operational, and so on)
• Provide the description and characteristics of the testbeds (name, location, available

resources)

 D4.5 - Design and Specification of RAWFIE Components (b)

47

• Provide the description and characteristics of each resource from a testbed (name, type of
resource such as USV, UGV, UAV, and supported sensors)

• Provide the testbeds and resources capabilities in terms of available technologies,
sensors, and corresponding tests

• Execute queries to the Master Data Repository, based on searching capabilities through
specific filters

• Allow updates of resources and testbeds information

The functionalities provided by the component, which take into account the list of requirements
from deliverable D3.2, are highlighted in the following.
A UML class diagram is used to specify the provided and required interfaces to and from other
RAWFIE components, as well as the most important operations and attributes of the Testbed
Directory Service classes.

Operations and attributes
With the aim to represent the structure of the Testbed Directory Service component, a class
diagram is provided below, showing the associations, operations and responsibilities of the
classes. The ListingResource and StoringResource classes implement the required interface
(REST API), in charge of receiving all the incoming requests from the Web Portal components,
e.g. from the Resource Explorer Tool.
The above classes make use of the StorageService class, which basically creates instances of
required testbeds and/or resources, to manipulate them later on and produce the necessary input
in order to build the queries to the repository. In turn, it calls the methods provided by the
RepositoryHandler class. This latest one, is the class responsible of realising the actual
communication with the Master Data Repository (i.e., the PostgreSQL/PostGIS database),
through the implementation of a JPA (Java Persistence API) interface. So it is used for final
information retrieval, update and registration of information on testbeds and resources.
All internal classes make use of the TestbedType and ResourceType Java objects, for
manipulating the structure of testbeds and resources.

 D4.5 - Design and Specification of RAWFIE Components (b)

48

Figure 21: Testbed Directory Service – Class diagram

Below some examples of the internal interactions between Testbed Directory Service classes /
modules are shown, by the mean of UML sequence diagrams.

Search for an available resource

1. The Experimenter issues a search request by specifying the parameters relative to the
specific resource information, using the Resource Explorer Tool

2. In this case, the searchResource REST interface, implemented by the ListingResource
class is called, by providing in input the search criteria and values (e.g. UxVs type,
sensors types)

3. The REST interface method uses the getResource method of the StorageService class,
which in turn fetches the information from the Master Data Repository, through the
RepositoryHandler class, providing a JPA (Java Persistence API) interface to the
database

 D4.5 - Design and Specification of RAWFIE Components (b)

49

Figure 22: Search Resource internal Sequence diagram

Register a new Testbed in the platform

1. The Platform Administrator starts with the process of registering a new Testbed into the
RAWFIE federation, after its formal approval and compliance with specific regulations.

2. In this case, the createTestbed REST interface, implemented by the StoringResource
class is called, by providing in input the Testbed information structure

3. The REST interface method uses the createTestbed method of the StorageService class,
which in turn inserts the information in the Master Data Repository, through the
RepositoryHandler class, providing a JPA (Java Persistence API) interface to the
database

 D4.5 - Design and Specification of RAWFIE Components (b)

50

Figure 23: Testbed Directory Service – Register a new testbed in the platform

Add a new UxV device into a Testbed facility

1. The Testbed Operator starts with the process of the new resource registration into the
given Testbed	

2. In this case, the createResource REST interface, implemented by the StoringResource
class is called, by providing in input the Testbed Id and the Resource information
structure

3. The REST interface method uses the assignResourcesTestbed method of the
StorageService class, which in turn inserts the new information in the Master Data
Repository, through the RepositoryHandler class, providing a JPA (Java Persistence API)
interface to the database

 D4.5 - Design and Specification of RAWFIE Components (b)

51

Figure 24: Testbed Directory Service - Add a new UxV device into a Testbed facility

Interactions and relationships with other components
The Testbed Directory Service interacts mainly with the Resource Explorer Tool and the Master
Data Repository. It also interacts with the Booking Tool and the Experiment Validator Service.

Provided Interfaces

• The Testbed Directory Service component API is invoked by the Resource Explorer tool
in order to perform the CRUD (Create, Read, Update, Delete) operations on testbeds and
resources belonging to the RAWFIE platform.

• It is also utilized by the Booking Tool and by the Experiment Validator Service, to get
access to information on testbeds and resources (UxVs).

Required Interfaces

• The Testbed Directory Service API will be in charge of executing the queries to
the Master Data Repository for performing CRUD operations with testbeds and related
UxV resources.

4.2.3 EDL Compiler and Validator
The EDL Compiler & Validator (ECV) is responsible for performing syntactic and semantic
analysis on the provided EDL scripts. The compilation and validation will be performed on top
of the proposed EDL model that is based on a specific grammar. The ECV will access the
provided script and identify any syntactic and semantic errors that could jeopardize the execution
of the experiment. Finally, when no errors are present, the component will have the opportunity
to generate the final code to be uploaded in the UxVs.

 D4.5 - Design and Specification of RAWFIE Components (b)

52

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping

PT-CPV-001
(High)

A tool for translating EDL into user
directives shall be provided

The Compiler & Validator
provides this functionality.

PT-CPV-002
(High)

An experimenter should have the
opportunity to use a code generation
engine 	

The Compiler & Validator
provides this functionality.

PT-CPV-003
(High)

Experiments defined via EDL shall be
validated after their authoring 	

The Compiler & Validator
provides this functionality.

PT-CPV-004
(High)	

The compiler and validator should
communicate with the authoring tool in
order to transfer error indications and
hints for solving them	

The Compiler & Validator
provides this functionality.

Responsibilities
The main responsibilities of the ECV are:

• It provides syntactic and semantic validation of each experiment workflow.
• It applies a set of constraints that should be met in order to have a valid experiment.
• It is capable of applying semantic checking for nodes communication, spatio-temporal

management, sensing and data management.
• It may perform code generation in the appropriate format in order to be uploaded into the

RAWFIE nodes.

Operations and attributes
Figure 25Error! Reference source not found. provides a class diagram that depicts the internal
architecture of the ECV. The main operations are related to scripts compilation and validation
and the production of the appropriate files to be adopted by the remaining components of the
RAWFIE architecture. A syntactic validator accompanied by a custom validator (to cover any
special needs for scripts compilation) undertakes the responsibility of identifying errors and
warnings. Cross link validation will be responsible to cover complex aspects of the experiments
workflow. Finally, a generator will be responsible producing the final code that could be adopted
by the remaining architecture.

 D4.5 - Design and Specification of RAWFIE Components (b)

53

Figure 25: Experiment Compiler – Class diagram

The internal interactions of the ECV classes / modules are given in Figure 26Error! Reference
source not found.. The Experiment Authoring Tool gives the experimenters the opportunity to
trigger the ECV. Afterwards, the ECV continuously adopts the functionalities provided by the
available validators to check the correctness of each experiment. The final step, after successive
iterations in correcting the EDL script, is the generation of the appropriate files and code.

 D4.5 - Design and Specification of RAWFIE Components (b)

54

Figure 26: Experiment Compiler - Sequence diagram

4.2.4 Experiment Validation Service
The Experiment Validation Service (EVS) is responsible for experiments validations with regard
to execution issues. Thus, the EVS will validate if each experiment can be efficiently executed in
the selected Testbed.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping

PT-EXV-
S-001
(HIGH)

RAWFIE shall provide
a validator to constantly
check experiment
scenarios during runtime	

The Validator provides this functionality.

PT-EXV-
S-002
(HIGH)	

The validation service
should perform syntactic
checking	

The Validator provides this functionality.

PT-EXV-
S-003
(HIGH)

The validation service
should perform semantic
checking	

The Validator provides this functionality.

Responsibilities
The main responsibilities of the EVS are:

• Provide semantic validation for each experiment at a specific testbed.

 D4.5 - Design and Specification of RAWFIE Components (b)

55

• Check the fulfilment of a set of constraints defined by experts for the specific testbed.
• Handle security & safety issues e.g., collision avoidance, and other non functional

(qualitative) aspects of each experiment. Efficient communications and control of the
UxVs team will be performed in order to increase the performance of the system.

• Perform cross experiment validation in order to help in maximizing the performance of
the RAWFIE framework.

Operations and attributes
The EVS involves a simple interface accessible by other components that are responsible to
initiate the validation process. An attribute named 'verbose' indicates if the service will provide
extensive information in a data log related to the analytical view of the validation process. In the
following picture, we present the class diagram of the discussed service.

Figure 27: Experiment Validator – Class diagram

 D4.5 - Design and Specification of RAWFIE Components (b)

56

Figure 28: Experiment Validator - Sequence diagram

4.2.5 Users & Rights Service
The Users & Rights Service provides authentication and authorization to all components of the
system.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-USR-S-001
(HIGH)

User login credentials
checking shall be provided

The UserAndRightsServiceProtocol interface
provides this function.

PT-USR-S-002
(HIGH)

RAWFIE platform shall
support various roles with
different privileges at every
level of access.

Users & Rights Service can assign several
roles to each user. The applications themselves
need to know which roles indicate access
privileges. They can then check if the user has
the required roles.

PT-USR-S-003
(LOW)

The Users & Rights Service
may provide a proxy
service for web application
that do not check access
rights.

The ProxyService proxies a HTTP request and
checks the roles.

Responsibilities
The main responsibilities of the Users & Rights Service are:

• To check and authenticate users and interacting components
• To provide authorization services (check if a user/component is allowed to do a specific

action)
•

 D4.5 - Design and Specification of RAWFIE Components (b)

57

Operations and attributes
The Users & Rights Service is based on the Users & Rights Repository that is a LDAP server.
The LDAP server stores users/component IDs and their roles (rights). Components may directly
access the LDAP server (using a restricted account) or via the Users & Rights Services to get
advanced query and editing functions. (Hint: If possible components should use the Users &
Rights Services. But if some existing software with LDAP support is used, it will be easier to use
LDAP instead of adapting the software)
The authentication between the different RAWFIE components is done via X.509 client
certificates. For authorization the roles need to be checked via the Users & Rights Services or
Repository.
The Users & Rights Services interface will provide the following functions to check credentials
(in cases where a user/experimenter does not provide a client certificate, a basic user/password
authorisation is possible), to read, add and edit users, to change the password of a user and to
check the rights/roles of a user. Also, the Users & Rights Service will act as certification
authority (CA): it will sign certificate signing request (CSR) of new users.
An additional ProxyService is provided for application that do not check access rights. It proxies
the HTTP request, looks for the requested URL, determines the needed roles for this URL and
checks if the user of the session has the needed roles.

Figure 29: Users & Rights Service - Class diagram

Password-based user login

 D4.5 - Design and Specification of RAWFIE Components (b)

58

1. A user opens via its browser an application of the RAWFIE web page and requests a
restricted resource (URL)

2. The application checks if the user is locally logged-in (e.g. via cookie for this application)
3. If not

a. Redirect to SSO page
b. The SSO page checks if the user is globally logged in
c. If not

i. The user is asked for credentials (username and password)
ii. The SSO page sends the credentials to the User & Rights Service

iii. The User & Rights Service checks the credentials and returns whether
they are OK

d. The SSO page redirects to the original web page (with some login token as
parameter)

e. The user requests the original web page again (with some login token as
parameter)

f. The application checks the login token and creates a user session (e.g. transmitted
via an cookie)

4. Proceed with “Check user authorisation”

Figure 30: Users & Rights Service – Password-based user login

 D4.5 - Design and Specification of RAWFIE Components (b)

59

X.509 Certificate-based user login

1. A user opens via its browser an application of the RAWFIE web page and requests a
restricted resource (URL)

2. Client certificate validated during SSL handshake (transport layer)
a. If correct: proceed processing in application layer
b. If wrong: cancel SSL connection (end).

3. Check if not logged-in (application layer)
a. Read user name of the X.509 certificate and create a user session

4. Proceed with “Check user authorisation”

Figure 31: Users & Rights Service – X.509 Certificate-based user login

Check user authorisation

1. After the user has logged in and has requested a restricted resource, the web application
checks if user is allowed to see the resource

2. Component requests the Users & Rights Service if the given user has the specific
role/right to see/edit this resource

3. The Users & Rights Service does:
a. Check if the user exits
b. Get groups of the user
c. Check if the role members contains the user or one of the groups of the user

4. If ok: grant access to the user
5. If wrong: show access denied to the user.

 D4.5 - Design and Specification of RAWFIE Components (b)

60

Figure 32: Users & Rights Service – Check user authorisation

Trusted and secure communication between the components
The components in RAWFIE should also use X.509 certificates to establish a trusted and secured
communication between them.

1. component A calls service of another component B
2. Transport layer: SSL handshake with client and server certificates (on error close

connection)
3. If there is a need to verify the authorisation

a. checks the certificate of the component A and reads the component name out of
the certificate

b. Component B calls Users & Rights Service to check if component A or the user
that has initiated the whole process has the needed roles/rights

 D4.5 - Design and Specification of RAWFIE Components (b)

61

c. Transport layer: SSL handshake with client and server certificates (on error close
connection)

d. The Users & Rights Service
i. checks the certificate of the component B and reads the component name

out of the certificate and
ii. checks if component B is allowed to read permissions

iii. checks if component A or the user has the needed roles/rights
iv. Returns the result (allowed/not allowed)

4. If allowed
a. component B executes the service method
b. returns the result to component A

5. If not allowed
a. component B returns “access denied” to component A

 D4.5 - Design and Specification of RAWFIE Components (b)

62

Figure 33: Users & Rights Service – Check user authorisation

Interactions and relationships with other components
Provided interfaces

• UserAndRightsServiceProtocol:
Any other RAWFIE component (especially from the Front Tier) may access this interface
to get user related information.	

Required interfaces

• Users & Rights Repository:
will provide a standard LDAP interface for access

 D4.5 - Design and Specification of RAWFIE Components (b)

63

4.2.6 Booking Service
The Booking Service is responsible for processing and validating all reservations requests at user
or/and experiment level initiated within the RAWFIE platform. It is also responsible for handling
changes of status of Booking requests and informing the interesting parties via appropriate
notifications.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping

PT-BOO-S-001
(HIGH)

Booking Service shall support
reservations of resources at both
user level and experiment level

BookingManager provides methods for
processing both experimenter level and
experiment reservations (see class diagram
Error! Reference source not found.)

PT-BOO-S-002
(HIGH)

User level booking shall be
triggered by the Booking Tool via a
REST API.

Booking Tool can call the IBookingService
interface methods both via RPC or REST (see
Interactions and relationships with other
components)

PT-BOO-S-003
(HIGH)

Experiment level booking shall be
triggered by the experimenter before
issuing a manual or schedule
launching of a validated experiment

processExperimentLevelRequest(…) method is
provided by the BookingManager which
should be called by other services or tools (i.e.
Experiment Authoring Tool) prior to calling
the Launching Service

PT-BOO-S-004
(HIGH)

Experiment level booking shall
support both immediate booking as
well as booking at a future time

Addressed by design and the way booking
process is implemented. User booking is
performed at specific timeslots in the future.
Experiment booking has as prerequisite an
existing user booking and refines it.

PT-BOO-S-005
(HIGH)

Booking Service shall provide all
the necessary methods to manage
the bookings including addition,
modification and
cancellation/deletion operations

IBookingService interface provides methods
for all requested actions

PT-BOO-S-006
(HIGH)

Booking Service shall be able to
compute and return feedback on
conflicting bookings for a provided
booking request

checkForConflictingBooking(…) method
provides this functionality

PT-BOO-S-007
(HIGH)

Reservation Data should be
persistent in order to survive
service failures and be available by
other services

BookingManager module interacts with the
master data repository via JDBC/JPA in order
to update/insert booking info

PT-BOO-S-008
(MEDIUM)

Historical data retrieval for
Bookings/Reservations should be
available on demand

All data related to reservations are stored in
the master data repository and can be queried

PT-BOO-S-009
(HIGH)

Booking functionality shall support
reservation of resources involving
multiple testbeds

NOT IMPLEMENTED
Due to the nature of the resources Booking
Functionality currently supports reservations
on single testbeds

PT-BOO-S-010 Booking functionality shall be able IBookingService methods will be exposed as

 D4.5 - Design and Specification of RAWFIE Components (b)

64

(HIGH) to correctly handle simultaneous
Reservations requests by end users

rest and rpc services in a servlet container
ensuring multithreaded support

PT-BOO-S-011
(MEDIUM)

Notification mechanisms may be
provided for experiments scheduled
for execution in the future.

NOT APPLICABLE
Refers to execution of experiments and not to
the booking process
(see also launching service)

PT-BOO-T-012
(HIGH)
(Moved from
Booking Tool)

Booking functionality should
provide means to ensure fairness in
resource booking as well as protect
for malevolent actions that a user
may perform.

BookingRequestChecker will apply a set of
checks on the proposed reservation ensuring
fairness and protection form spurious actions
(see Operations and attributes section)
Moreover, booking requests are generally put
in a pending status waiting for approval by a
testbed operator which introduces an extra
level of protection from malevolent actions

Responsibilities
The main responsibilities of the Booking Service are:

• To validate all reservations requests (add, edit, delete, show) coming from the Booking
tool based on a set of predefined constraints/checks

• To coordinate reservations of testbed resources among experimenters ensuring fairness
• To provide notifications for the status of pending reservations via email or message bus
• To interact with the Master Data Repository for persisting/updating information

regarding a specific booking

Operations and attributes
The Booking Service provides all necessary methods to manage the bookings including add, edit
and delete operations (IBookingService interface). Add and edit methods should return
conflicting bookings in case of error or an empty list if the operation was successful. It is also
possible to check explicitly for conflicts with other bookings and to query all bookings in a given
timespan (optionally also filtered by user-id). A booking data entry stores, beside a unique ID
and a timespan (start and end date), the reference to the experiment and to experimenter/user that
performs the reservation. Also a list of booking items (references to the testbed and to the used
UxVs) is stored with the booking data. The BookingManager implements the Booking Service
interface and implements the necessary business logic to retrieve, store and generally manage
data in the Bookings Repository. Two additional modules BookingRequestChecker and
BookingStatusUpdater, are also envisioned responsible for checking the validity of booking
requests and for sending status update messages respectively.
BookingRequestChecker module will be responsible for applying a series of checks, besides the
check for conflicts) that will validate whether reservation process should continue or not. This
may include but not be limited to:

• Ensuring some fairness in reservations (i.e. not allowing a user to book all testbed
resources)

• Checking user validity and authorization
Booking service provides also an approveBooking(id) method through which a pending booking
can either be accepted or rejected. Only platform users registered as testbed administrators (or a
similar role) should be allowed to call this method.

 D4.5 - Design and Specification of RAWFIE Components (b)

65

BookingService will also provide functionality for sending email notifications to the platform
registered users that are involved in a booking action. This may involve registered experimenters
creating or editing their booking as well as testbed administrators or testbed managers
responsible for deciding whether a proposed booking request can be fulfilled or not.

Figure 34: Booking Service - Class diagram

 D4.5 - Design and Specification of RAWFIE Components (b)

66

Figure 35: Booking Service - Overview

View bookings of a testbed

1. Experimenter opens the calendar view of a specific testbed in the Booking Tool
2. The Booking Tool requests the bookings of the testbed in the shown timespan from the

BookingManager (IBookingService interface)
3. The BookingManager loads the data from the Master Data Repository and returns the

results to the Booking Tool
4. The results are displayed in a calendar view

 D4.5 - Design and Specification of RAWFIE Components (b)

67

Figure 36: Booking Service – View bookings of a testbed

Add/edit a booking (experimenter)

1. Experimenter submits the form with the booking details to the Booking Tool
2. Booking Tool calls the addBooking(…) or editBooking(…) method of the

BookingManager
3. The BookingManager processes the booking request:

• reads all bookings of the given resources in the given timespan from the Master
Data Repository

• contacts the BookingRequestChecker that checks the validity of the request and
whether any conflicts with existing booking are introduced

4. If conflicts are identified, they are returned to the Booking Tool, which shows them to the
user

5. If there are no conflicts, then BookingManager:
a. Writes or updates the data repository appropriately with the new or updated

booking data. The booking status is set to PENDING (to be approved by a testbed
operator),

b. creates and sends an email message both to the experimenter (initiating the
request) as well as to the registered testbed operator responsible for approving the
booking later on

c. return a success message to the Booking Tool, which shows it to the user

 D4.5 - Design and Specification of RAWFIE Components (b)

68

Figure 37: Booking Service – Add/Edit a booking

Approve/Reject a pending booking (testbed operator)

1. A Testbed operator (or similar role) loads the calendar view where all bookings (pending
and confirmed) are displayed

2. Testbed operator selects an appropriate action for a pending booking request
(approveBooking(…) or rejectBooking(…))

3. The BookingManager interacts with the Master Data Repository in order to update the
booking request status (CONFIRMED or REJECTED) in the repository

4. The BookingStatusUpdater module fires a status change involving:

 D4.5 - Design and Specification of RAWFIE Components (b)

69

• Sending of corresponding email to registered experimenters that initiated the
booking

• Sending of a BookingStatusMsg to the message bus for any other component that
might be interested of being informed.

Figure 38: Booking Service – Approve/Reject booking

Interactions and relationships with other components
Booking Service implements the IBookingService interface which used mainly by the Booking
Tool that provides a Web UI to manage the bookings (edit/add/approval etc.). However other
components (i.e Launching Service, Experiment Authoring Tool) are also possible to call certain
methods of the IBookingService in order to obtain information on specific user level reservations
that may be needed for performing their activities.
IBookingService methods will be exposed both via RPC or REST API.
Booking Service interacts with the Master Data Repository via JDBC/JPA, in order to
retrieve/insert/update booking information for a registered experimenter/user of the platform.
Booking Service acts also as a producer of booking status update messages (BookingStatusMsg)
that are sent to the message bus and may be consumed by other interested services/modules.

4.2.7 Launching Service
The Launching Service (LS) is responsible for handling requests for starting or cancellation of
experiments. It supports short term and long term launching. LS will execute only authorised and

 D4.5 - Design and Specification of RAWFIE Components (b)

70

approved experiments based on spatio-temporal constraints validated just prior to the actual
launching.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping

PT-LAU-S-001
(HIGH)

Launching Service shall
support short-term or
manual launching of an
experiment initiated
directly by an experimenter

ILaunchingServiceProtocol provides a
ManualStart(…) method

PT-LAU-S-002
(HIGH)

Launching Service shall
support long-term or
scheduled launching of an
experiment initiated
directly by an experimenter

ILaunchingServiceProtocol provides a
schedule(…) method.
The LS contains an internal
ExperimentScheduler singleton module that
can be used for adding or removing an
experiment for/from future launching

PT-LAU-S-003
(HIGH)

Each executing experiment
shall be uniquely identified
within RAWFIE ecosystem

LaunchingServiceProtocolImpl class provides
a generateExecutionId(…) method that should
create a unique Id to be associated with
launched experiment

PT-LAU-S-004
(HIGH)

During launching it must be
ensured that the experiment
to be started has been
validated based on spatio-
temporal constraints

LaunchingServiceProtocolImpl class provides
a preValidate(…) method that applies a
sequence of checks prior to actual launch

PT-LAU-S-005
(HIGH)

During launching it must be
ensured that the experiment
to be started belongs to an
authorized user of the
RAWFIE platform

LaunchingServiceProtocolImpl class provides
a preValidate(…)method that applies a
sequence of checks prior to actual launch

PT-LAU-S-006
(HIGH)

The Launching Service
shall be able to address
simultaneous requests for
starting an experiment

ILaunchingServiceProtocol methods will be
exposed as rest and rpc services in a servlet
container ensuring multithreaded support

PT-LAU-S-007
(HIGH)

The Launching Service
shall send an appropriate
message upon successful
starting of an experiment

ExperimentStartRequest JSON message is
sent by createAndSendMessage() upon
successful processing of manual or scheduled
launching (see sequence diagrams below)

PT-LAU-S-008
(HIGH)

The Launching Service
shall interact with other
components or database
services in order to retrieve
information needed for
deciding on launching an
experiment

LaunchingServiceProtocolImpl class provides
a updateLaunchConfig(…) method and the
service interacts with the Master Data
Repository for retrieving Booking and
Experiment Related information

PT-LAU-S-009
(HIGH)

Interactions of the
launching service with
database services and/or

By design, Launching Service interacts only
with middle tier components, the message bus
and the master repository.

 D4.5 - Design and Specification of RAWFIE Components (b)

71

other components should
respect the RAWFIE
platform boundary

No direct communication with the testbed tier
exists.

PT-LAU-S-010
(HIGH)

Launching service shall
support requests for
experiment cancellation

ILaunchingServiceProtocol provides a
cancel(…) method and may sent an
ExperimentCancelRequest to the
ExperimentController

PT-LAU-S-011
(MEDIUM)

RAWFIE platform shall
provide means to ensure
fairness in experiments
execution

NOT APPLICABLE
The LS is responsible only for initiating the
experiment execution process and does not
intervene to the actual experiment execution

PT-LAU-S-012
(HIGH)

Launching service shall
provide appropriate
feedback to the requested
entity regarding failures on
fulfilling a request

All ILaunchingServiceProtocol methods may
return a LaunchingActionResp structure
which includes a boolean status field
indicating success or failure and a msg string
field that may provide details the problem

PT-LAU-S-013
(HIGH)

Launching service shall not
alter or modify any
information related to the
actual execution of an
experiment

By design, Launching Service generates and
forwards only appropriate messages for
initiating or cancelling an experiment.
Database write operations are related only to
updating/relating the executionId with an
experiment and they do not “touch”
application specific data

PT-BOO-S-011
(MEDIUM)
(moved from booking
service)

Notification mechanisms
may be provided for
experiments scheduled for
execution in the future.

ExperimentScheduler component provides a
sendNotification(…) event that can be
triggered at a configurable interval prior to
actual launching

Responsibilities
The main responsibilities of the Launching Service are:

• To initiate StartExperiment requests either manually or on a scheduled basis and sent it to
the message bus

• To initiate CancelExperiment requests for a running or scheduled experiment and sent it
to the message bus

• To generate the experiment execution Identifier (executionId) that uniquely identifies a
launched experiment within the RAWFIE system

• To update the Master Repository with information related to the initial launch
configuration for an experiment.

Operations and attributes
Launching Service implements the ILaunchingServiceProtocol and supports two (2) types of
launching modes:

(a) Short-term launching (manual launching): This gives the opportunity to experimenters
to initiate pre-defined and pre-approved experiments directly after authoring them in the
Authoring tool. The manualStart(…) method is used for this purpose.

(b) Long-term launching (scheduled launching): by calling the schedule(…) method after
authoring and assigning resources to an experiment the experimenter is able to schedule

 D4.5 - Design and Specification of RAWFIE Components (b)

72

an experiment to be executed at a feature time. This is achieved by using the Launching
service internal scheduler.

Experiment launching in both cases is subject to a number of internal pre-validations including
consistency of the experiment with the associated experiment level reservations, experimenter’s
authorization, and/or absence of already running instances of the experiment under launch.
Launching service is also responsible for handling cancellation of experiments. This may include
experiments already running or experiments already scheduled. Cancellation is achieved via
calling the cancel(…) method providing preferably the experiment executionId5
Figure 39, provides a class diagram depicting the internal structure of the Launching Service
including the non-primitive data types used, as well as the expected interactions with other
RAWFIE services and the Master Data Repository. Following pictures presents sequence
diagrams elaborating the internal behaviour of the system.

5 executionId uniquely identifies a running or scheduled experiment within the RAWFIE platform. It should not be
confused with the experimentId, which adheres to an authored experiment. executionId represents a running instance
of an authored experiment

 D4.5 - Design and Specification of RAWFIE Components (b)

73

Figure 39: Launching service – Class diagram

 D4.5 - Design and Specification of RAWFIE Components (b)

74

Figure 40: Experiment launching Service Overview - Sequence diagram.

 D4.5 - Design and Specification of RAWFIE Components (b)

75

Figure 41: Experiment Launching Service - Manual Launch Sequence diagram.

 D4.5 - Design and Specification of RAWFIE Components (b)

76

 Figure 42: Experiment Launching Service - Scheduled Launch Sequence diagram.

 D4.5 - Design and Specification of RAWFIE Components (b)

77

Figure 43: Experiment Launching Service - Cancellation Sequence diagram

Interactions and relationships with other components
As depicted in the above UML diagrams the Launching Service listens for requests either by the
Experiment Authoring Tool (for starting or scheduling an experiment) or from the Experiment
Monitoring Tool (for experiment cancellation). Launching Service interacts with the Master Data
Repository for retrieving all the necessary information for processing its requests and creates
appropriate JSON messages targeting the Experiment Controller. The latter communication is
asynchronous and implemented via the Message Bus.

4.2.8 Visualisation Engine
The Visualisation Engine provides the necessary back end services for geospatial data
visualisation related to running experiments. It provides the required maps for area visualisation,
can cache data for faster load times and finally provides a spatial database for converting and
storing UxV information into geo information layers.

 D4.5 - Design and Specification of RAWFIE Components (b)

78

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with
component’s functionalities

PT-VIS-E-001
(HIGH)

The Visualisation Engine shall retrieve
from the message bus all runtime
experiment information needed for
visualising the UxVs and/or any sensor
measurement

With StartExperiment() the user
automatically subscribes to topics
that provide information about the
experiment

PT-VIS-E-002
(LOW)

The Visualisation Engine shall provide a
GIS server capable of handling
geographical layers (overlays)

GeoServer will be deployed,
configured and used for this task

PT-VIS-E-003
(LOW)

The Visualisation Engine may allow
cache of data for faster access to the
available geographic layers

GeoWebCache will provide this
option given we provide our own
maps of the premises

PT-VIS-E-004
(MEDIUM)

The Visualisation Engine shall provide
the possibility to reply experiments using
historical data

The data from the message bus will
be mapped in the database and the
VE will replay it upon request from
the VT

Responsibilities
The main responsibilities of the visualisation engine are:

• Convert waypoints and GPS data to geo information layers and pass them to the VT	
• Retrieve maps from external providers and pass them to the VT	
• Cache data for faster download of maps

Operations and attributes
In this part of the description a high level class diagram of the visualisation engine (VE) is
presented that will be in the middle tier, and will work closely with visualisation tool (VT) that
will reside in the front end tier.

 D4.5 - Design and Specification of RAWFIE Components (b)

79

Figure 44: Visualisation Engine - Class diagram

The VE will take care of different tasks:

• Manage what is going to be presented to the experimenter, which UxVs are going to be
plotted, over which terrain, when etc. This information will come from the Message Bus
and will be sent to the VT.	

• Indicate when the experiment is started/stopped and if there are issues with the running
experiments, a decision will be made how to present them to the experimenter. This
information will come from the Experiment Controller and will be sent to the VT over
the websocket	

• Which maps are about to be retrieved and from where. Maps may be retrieved from
different providers like Google Maps, Bing Maps, OpenStreetMaps etc. and will be sent
to the VT over the GIS channel	

• Based on preferences, defined by the experimenter or set for an experiment, layers will be
prepared on top of the main map to indicate different conditions, scenario and other
important geographic information. This information will come from the VT over the
websocket	

The sequence diagrams below provide information about the data flow and the interaction
between the different components.

 D4.5 - Design and Specification of RAWFIE Components (b)

80

Figure 45: Visualisation Engine - Overview

Start an experiment:	

1. The Experimenter clicks on a button to start the visualisation of the experiment.	
2. The VT opens two websocket connections. One is for static data for the experiment, the

other is for streaming of data in realtime. 	
3. The VT requests via WebSocketData the parameters for the experiment like number of

UxVs, their type, Sensor number, their type, units etc.	
4. The VE retrieves this data from the Master Data Repository and sends it back to the VT	

 D4.5 - Design and Specification of RAWFIE Components (b)

81

5. The VE subscribes to the UxV topics on the MessageBus. Whenever a new data from the
UxVs from the experiment comes, then this data is updated, adjusted for the VT and sent
to it.	

6. The VT udpates the visualisation with the new received data.	
7. The browser window is properly initialized and set for the VT to show the experiment’s

run.	
	

Figure 46: Visualisation Engine – Start an experiment visualisation

UxV update:

1. Whenever there is a change in the experiment data, the VE receives the data from the
topics that it is subscribed to	

2. The VE needs to update the received data in order to put it in the proper coordinate
system, in the expected units and others.	

3. Then the VE sends this data to the VT. The VT updates the screen with the new position
of the UxVs for example or with the new sensor data	

 D4.5 - Design and Specification of RAWFIE Components (b)

82

Figure 47: Visualisation Engine - Position Update

	
The experimenter can follow the positions of the UxV during the execution of the experiment.

The Experiment Controller updates the status of the experiment:

1. The Experiment Controller updates the status of the experiment. This could mean that
there was an interference during the execution of the experiment, or there was an
unexpected interruption, or another issue. This data is sent to a predefined topic on the
message bus	

2. The VE receives this data, because it is subscribed to this topic.	
3. The VE forwards this information via WebSocketData to the VT	
4. VT informs the Experimenter about the updated status.	

Figure 48: Visualisation Engine - Update Status of an Experiment

 	

 D4.5 - Design and Specification of RAWFIE Components (b)

83

Figure 49: Visualisation Engine – Stop an experiment visualisation

Replay an experiment:

1. The Experimenter start the replay of the experiment.	
2. The VT opens WebsocketStream for getting the data for the experiment.	
3. The VE starts fetching data from the Master Data Repository and, after updating it for the

proper visualisation in the VT, sends it to the VT.	
4. This continues until the experiment is over or until the Experimenter decides to stop the

visualisation

Figure 50: Visualisation Engine - Replay an experiment

Interactions and relationships with other components

Required interfaces:

 D4.5 - Design and Specification of RAWFIE Components (b)

84

• The VE has interface to the Message Bus for receiving updates on the UxV in the
Publish/Subscribe manner.

• The VE interface to the Experiment Controller will provide information about the
execution of the experiment. It will monitor for start and stop of the real experiment, as
well as for cases when the connection to the UxV is lost and others.

• The external map interface is used in the VE for retrieving maps from external provider.
In case the experimenter needs detailed and publically available maps, they can be
received from such services over this interface.

Provided interfaces:

• The GIS interface is used to send geographical information in various formats like WMS,
WFS, WPS and WCS from the VE to the VT. The VT requests map information over the
websocket interface and the geo information data is sent over the GIS interface.

• The websocket interface is used in both directions to retrieve information, like sensor
data from VE to VT or to inform the VE that the experimenter changed a layer in the VT
and it needs to be reloaded from the VE.

4.2.9 Data Analysis Engine
Component requirements as identified in D3.2

ID
(Priorioty)

Description Requirement Mapping with
components functionalities

PT-DIR-S-001 (Medium) Analysis engine will support
accepting analysis jobs

In order for a job to be accepted,
the definition of the required user-
specified parameters and models
has to be performed through the
Data Analysis Tool before the
encapsulation.

PT-DIR-S-002 (Medium) Analysis engine will support
compiling analysis jobs

Before compilation, an analysis
job has to be accepted by the
engine. Previously specified
requirements therefore apply as
well.

Responsibilities
The main responsibilities of the Data Analysis Engine are:

• Schedule analytics job	
• Provide compute engine with correct endpoints	

o data source	
o data sink	

• Create appropriate jar file for compute engine	
• Provide train, evaluation and infer methods to work with built model

Operations and attributes

• Class diagram involving the Data Analysis Engine:

 D4.5 - Design and Specification of RAWFIE Components (b)

85

Figure 51: Data Analysis Engine - Class diagram

Sequence diagrams involving the Data Analysis Engine in the case of a streaming analytics task:

Figure 52: Data Analysis Engine – streaming analytic task

 D4.5 - Design and Specification of RAWFIE Components (b)

86

Interactions and relationships with other components
The Data Analytics Engine will communicate with:

1. Message Bus [Read Only]	
2. Analysis Results Repository [Read/Write]	
3. Measurement Repository [Read Only]	
4. Data Analysis Tool [Read Only]

4.2.10 System Monitoring Service
The System Monitoring Service will check if all system components and services are running.
This also includes data (if available) about the status of the Testbeds and UxVs from the
Monitoring Manager of each Testbed.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-SYM-
S-001
(HIGH)

RAWFIE middle tier shall
include a module to
monitor the performance
of the middle tier
components.

The third party application Icinga will monitor the
servers and the services on them

PT-SYM-
S-002
(HIGH)

RAWFIE Testbeds and
UxVs statuses should be
monitored

The Monitoring Manager of the Testbed should send
health status data on the message bus. This data will
then be evaluated by the System Monitoring Service.

PT-SYM-
S-003
(HIGH)

RAWFIE system
administrators should be
informed if critical, for the
RAWFIE platform
operation, services are
down

Icinga can be configured to send emails on case of an
error. SMS may also be sent, by sending an email to
an SMS provider.

PT-SYM-
S-004
(LOW)

User may register for
notifications if certain
components are down

Icinga can also be configured for this.

PT-SYM-
S-005
(MEDIUM)

Notifications about
planned downtimes

Icinga can also be configured for this.

Responsibilities
The main responsibilities of the System Monitoring Service are:

• Collect health status information from all relevant RAWFIE components	
o “Pinging” servers and services�
o Run special plugins to get detail status information�

• Receive health status data from the Monitoring Manager (via message bus). �
• Store and aggregate status information to be displayed via the System Monitoring Tool.�

 D4.5 - Design and Specification of RAWFIE Components (b)

87

• Send alerts to the RAWFIE System Administrator when servers or services are not
responding or if the defined thresholds of performance indicators are exceeded. 	

Operations and attributes
The System Monitoring Service will be realized by configuring and extending the existing
monitoring solution Icinga [7] (of fork of Nagios [9]). Nagios is open source and a de-facto
standard software for system monitoring.
The system monitoring software Icinga has built-in functionalities to check health status of
standard system, supporting actions like e.g. is server alive, does database access connections,
and is memory usage too high. NRPE (Nagios Remote Plugin Executor) extension of Icinga and
the JNRPE (Java NRPE) Server is used to write own plugins that collect special status
information from the RAWFIE components. The plugin for RAWFIE transfers the
asynchronously collected data by the System Monitirong Servcie (via Message Bus) to the Icinga
server.
Icinga can also be configured to send notification (e.g. an email) to a predefined group of
receivers, if servers or services are not responding or if the defined thresholds of performance
indicators are exceeded.
To get health status information from Icinga for further processing in the System Monitoring
Service, the MK-Livestatus API [10] extension will be used.
The System Monitoring Service provides the interface “SystemMonitoringServiceProtocol”. It is
used by the System Monitoring Tool and the Experiment Monitoring Tool to display the data on
a web page.

 D4.5 - Design and Specification of RAWFIE Components (b)

88

Figure 53: System Monitoring Service - Class diagram

Checking procedure

1. Internal timer of Icinga starts the monitoring procedure
2. For all configured servers / services do…

a. Check type of server / service
i. If type is a standard Icinga checker, execute it (e.g. ping, CPU load, RAM

usage, HTTP alive)
ii. If type is “Poll RAWFIE component status”

1. JNRPE Server is called (check_rawfie plugin)
2. JNRPE Server polls the health status of the RAWFIE component
3. JNRPE Server returns the result

iii. It type is “Health status received via message bus”
1. JNRPE Server is called (check_rawfie plugin)
2. JNRPE Server requests the latest health status received via

message bus from the System Monitoring Service
(getComponentServiceHealth_internal())

3. JNRPE Server returns the result
b. In case of an monitoring error

i. Send notification (e.g. email) to all configured receivers (e.g. the RAWFIE
system administrator)

 D4.5 - Design and Specification of RAWFIE Components (b)

89

3. Store the results

Figure 54: System Monitoring Service – Checking procedure

Received health status via message bus
Some components only send their health status autonomously to the message bus. The System
Monitoring Service is listening for this messages and stores the latest health status per
component internally. The JNRPE Server (check_rawfie plugin) can than request the status, to
transmit is to the Icinga server.

 D4.5 - Design and Specification of RAWFIE Components (b)

90

Figure 55: System Monitoring Service – Received health status via message bus

View health statuses
The are two way to get information about the current status of the system: The easy status
dashboard in the Web Portal and the detailed Icinga Web application.

1. Via the status dashboard
a. Admin request the status dashboard from the System Monitoring Tool
b. The System Monitoring Tool calls getComponentServiceHealths() from the

SystemMonitoringManager
c. The SystemMonitoringManager request from Icinga the health statues via the

MK-Livestatus interface.
d. SystemMonitoringManager returns the health statues
e. System Monitoring Tool renders the status page and returns it to the user

2. Via the Icinga Web
a. Admin logs in into Icinga Web
b. Admin request a detailed status page (e.g. history or chart)
c. Icinga Web loads data from Icinga (via internal APIs)
d. Icinga Web renders the page and returns it to the user

Figure 56: System Monitoring Service – View health statuses

 D4.5 - Design and Specification of RAWFIE Components (b)

91

Interactions and relationships with other components
Provided interfaces

• System Monitoring Service (SystemMonitoringServiceProtocol):
The System Monitoring Tool display the collected data in a web page UI. Also the
Experiment Monitoring Tool will show some status information about the resources
belonging to an experiment.

Required Interfaces:

• Some health status interface
All important components of the RAWFIE system are monitored via standard procedures,
via special plugins/status interfaces or they send their status autonomously to the message
bus.

4.2.11 Accounting Service (FRAU)
Keeps track of resources usage by individual users to charge them later.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with
component’s functionalities

PT-ACC-S-
001
(MEDIUM)

The accounting service should be
capable to accept different cost
models regarding RAWFIE usage
on a per service basis

A CostModel will be defined that will
various parameters to compute the cost of
an resource usage

PT-ACC-S-
002
(MEDIUM)

The accounting service should be
capable to gather statistics regarding
usage of the platform by
experimenters.

Data about the used resources are queried
from the Master Data Repository.
Notification from the message bus about
finishing, cancelling or aborting an
experiment are taken into account.

PT-ACC-S-
003
(MEDIUM)

The RAWFIE platform should
record information related to time
and type of access for a service by a
user.

The data type ResourceUsage will be used
for this

PT-ACC-S-
004
(MEDIUM)

The cost model used may take into
consideration the overall time of
experiments executed by a user of
the platform.

Will be covered by the CostModel

PT-ACC-S-
005
(MEDIUM)

The accounting service may support
different types of charging based on
the type of the experimenter
(industrial, research, university etc.)

Will be covered by the CostModel

PT-ACC-S-
006
(MEDIUM)

The accounting service may support
predefined types of memberships
regarding usage of the platform that
may depend on various types of
parameters

Will be covered by the CostModel

 D4.5 - Design and Specification of RAWFIE Components (b)

92

PT-ACC-S-
007
(MEDIUM)

The accounting service should be
able to handle the addition of new
services that may be incorporated in
the RAWFIE platform during time.

Will be covered by the CostModel

Responsibilities
The Accounting Service should cover all aspects that are needed to charge user/experimenter
based on their resource usage.

• Determine the used resources for an experiment
• Compute the cost for the resource usage, based on different cost models that apply to the

experimenter
• Create bills and sent them to the experiments
• Register payments and manage the balance of an experimenter
• Inform the user about his resource usage and his balance.

Operations and attributes

Figure 57: Accounting Service – Class diagram

Error! Reference source not found.

 D4.5 - Design and Specification of RAWFIE Components (b)

93

Picture above shows an abstract overview of the possible elements of the Accounting Service.
Accounting and billing is common task where several solutions exits, e.g. Kill Bill6, Opencell7,
jBilling8, OpenSourceBilling 9, InvoicePlane10, MEVEO11 or BillRun12. These solutions will be
evaluated and tested in the upcoming iteration, how far they fit in the RAWFIE ecosystem. If no
fitting or adaptable solution is found, an own application for RAWFIE will be developed.
Interactions and relationships with other components

Required Interfaces

• Master Data Repository (JDBC)
o Load data about booked resources

• Message Bus
o Get notification about finished, cancelled and aborted experiments.

4.2.12 Experiment Controller
The Experiment Controller (EC) is a service placed in the middle tier and is responsible to
monitor the smooth execution of each experiment, acting as a ‘broker’ between the experimenter
and the resources in (near) real time.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with component’s
functionalities

PT-EXP-C-
001
(HIGH)

Cancellation of running
experiments should be possible

Validator will do this at the second integration
of development

PT-EXP-C-
002
(MEDIUM)

Experiment Controller shall
allow experimenters to
remotely navigate UxVs.

Validator, Registrator and ExperimentFeasibility
will do this at the second integration of
development

PT-EXP-C-
003
(HIGH)

The Experiment Controller
shall support the execution of
experiments that involve
multiple testbeds

Registrator and ExperimentFeasibility will do
this at the second integration of development

PT-EXP-C-
004
(HIGH)

The Experiment Controller
shall be able to support
multiple experiments running
the same time in parallel

Validator, Registrator and ExperimentFeasibility
will do this in future

PT-EXP-C- The Experiment Controller Validator will do this at the second integration

6 http://killbill.io/
7 http://opencellsoftware.com/
8 http://www.jbilling.com/
9 http://opensourcebilling.org/
10 https://invoiceplane.com/
11 http://manaty.net/products/meveo-open-source-billing-system
12 https://billrun.com/

 D4.5 - Design and Specification of RAWFIE Components (b)

94

005
(HIGH)

shall be able to analyse the
whole experiment script and
dispatch the appropriate parts
to each responsible testbed
facility

of development

PT-EXP-C-
006
(HIGH)

The Experiment Controller
shall support receiving
feedback at regular intervals
from all testbed facilities about
the progress of the experiment
in this time interval

Agent and Validator will do this at the second
integration of development

PT-EXP-C-
007
(HIGH)

The Experiment Controller
shall be able to override the
order of instructions described
in the input script while the
experiment is running

Validator will do this at the second integration
of development

PT-EXP-C-
008
(HIGH)

The Experiment Controller
shall be able to continuously
feed the front-end tier
(Experiment Monitoring Tool)
giving the experimenter a clear
view of the experiment
workflow as a whole

Agent will do this at the second integration of
development

PT-EXP-C-
009
(HIGH)

The Experiment Controller
shall send distinct error and
warning messages in every
case the experiment’s state
diverges from the aimed target

Agent and Validator will do this at the second
integration of development

Responsibilities
The main responsibilities of the Experiment Controller are:

• Control the distibuted status of the experiment	
• Transfers the instructions from the launching service to the Resource Controller	
• Execute the necessary actions to stop/cancel a running experiment on request	
• Transfer the instructions from the UxV Navigation Tool to the Resource Controller	
• Transfer the data from the Resource Controller to the Experiment Monitoring Tool	

Operations and attributes

 D4.5 - Design and Specification of RAWFIE Components (b)

95

Figure 58: Experiment Controller - Class diagram

Register an Experiment

1. Registrator Class interacts with the Testbed Manager as to register the testbed to the
middle tier. 	

Checks the Availability of the Resources
The Experiment controller is responsible for the evaluation of the feasibility of the experiment.

1. User initializes the experiment using the Launching Tool or the UxV Navigation Tool.
The Experiment Feasibility class evaluates the user's preferences and inform the
Experiment Monitoring tool about the ability of the system to perform such an
experiment. 	

Transfers the user's instructions from the Launching Tool to the Resource Controller.
1. Validator Class validates the format of the provided JSON file	
2. Transfers the file to the Resource Controller.	

Transfers the user's instructions from the UxV Navigation Tool to the Resource Controller.
1. Validator Class validates the format of the provided JSON file	
2. Transfers the file to the Resource Controller.	

Stop/cancel a running experiment on request
1. The user clicks on the "Cancel" button (from the Experiment Monitoring Tool).	
2. Experiment Controller transmits an appropriate message so as to cancel the mission.	

Inform the Experiment Monitoring Tool
The Experiment Controller shall be able to continuously feed the front-end tier (Experiment
Monitoring Tool) through the Agent, giving the experimenter a clear view of the experiment
workflow as a whole
	

 D4.5 - Design and Specification of RAWFIE Components (b)

96

Figure 59: Experiment Controller – Sequence diagram	

Interactions and relationships with other components
Required Interfaces

• Launching Service: This interface is mandatory so as to initialize the experiment and to
transfer the user's instructions to the Experiment Controller.

• UxV Navigation Tool: This interface is mandatory so as to initialize the experiment and
to transfer the user's instructions in case of UxV Remote Control to the Experiment
Controller.

• Testbed Manager: Experiment Controller utilizes this component as to register the testbed
to the middle tier.

• Network Manager: Experiment Controller triggers Network manager for the provisioning
of the network connections during the experiment between the nodes.

• Experiment Monitoring Tool: This component displays the current status of the
experiment. Additionally, Experiment Monitoring tool allows the experimenter to
stop/cancel a running experiment

• Resource Controller: Experiment Controller forwards the instructions for experiment to
the Resource Controller.

 D4.5 - Design and Specification of RAWFIE Components (b)

97

4.3 Testbed Tier (Testbeds and Resources control components)

4.3.1 Description
This subsection describes the Testbed Control, monitoring and analysis components. The
Network Controller manages the network connections and the switching between different
technologies in the testbed. The Monitoring Manager Component is responsible for the micro-
management of the resources. The proximity component allows members of a swarm of
autonomous vehicles to discover the existence and possibly interact with each other with very
low latency without depending on the RAWFIE middleware or any other ground equipment. The
Testbed Manager is responsible for the administration of the devices of each one of the
federation Testbeds as well as the operational control of all Testbed components needed for the
successful execution of each experiment.
The main components of the navigation system are the Experiment Controller and the Resource
Controller which ensures the safe and accurate guidance of the UxVs based on the user's
preferences. More details about the Testbed Tier components are given in the following
subsections.

Figure 60: Testbed control, analysis and monitoring– Deployment / Components Diagram

4.3.2 Monitoring Manager
Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping

TB-MOM-
001

The Monitoring Manager
component should be able to

 D4.5 - Design and Specification of RAWFIE Components (b)

98

(HIGH) provide information about the
capabilities of each resource node.

TB-MOM-
002
(HIGH)

The Monitoring Manager
component should collect and
report current status of testbed
facilities

TB-MOM-
003
(HIGH)

The Monitoring Manager
component should store
periodically all testbed information

TB-MOM-
004
(HIGH)

Testbed monitoring manager
should be able to transmit the
current status to the System
Monitoring Service.

Monitoring Manager is responsible for the monitoring of the status of a testbed and the devices
belonging to it, at functional level, reading information about the ‘health of the devices’ and their
current activity.

Responsibilities
The main responsibilities of the Monitoring Manager are:

• Periodically check the current status of the available resources in the facility like battery
lifetime, CPU load, free RAM, bit error rate, etc.

• Periodically check the status of the testbed facilities like weather conditions, network
connections available, etc.

• Store the status of the testbed characteristics and the devices in a data log.
• Transmit current status information to the System Monitoring Service (as special plugin)

Operations and attributes
The operations of the Monitoring Manager are shown in the class diagram below. The following
methods are implemented inside Monitoring Manager:
collectUxvStatuses(): tries to connect to all UxVs in the testbed to read properties like battery
lifetime, CPU load, free RAM, bit error rate, etc.
collectTestbedStatuses(): reads the available testbed properties like weather conditions or
network connections
logData(): logs the data in a log file.
Also the IMonitoringPlugin interface is implemented, so the System Monitoring Service can
read status data of the testbed.

 D4.5 - Design and Specification of RAWFIE Components (b)

99

Figure 61: Monitoring Manager – High level class diagram

The interactions of the Monitoring Manager are presented in the following sequence diagram.
Periodically it collect UxVs and testbed status information. This information is logged inside the
component. Via the IMonitoringPlugin interface the System Monitoring Service can load –
relevant data for the current status of testbeds and their resources.

 D4.5 - Design and Specification of RAWFIE Components (b)

100

Figure 62: Monitoring Manager – Monitoring sequence diagram

Interactions and relationships with other components
Provided interfaces

• IMonitoringPlugin
The collected status information is read by the System Monitoring Service.

Required interfaces:

• Access to testbed and UxVs
The Monitoring Manager communicates with all UxVs in the testbed and the testbed
itself to read their status information.

4.3.3 Network Controller
Component requirements as identified in D3.2

 D4.5 - Design and Specification of RAWFIE Components (b)

101

Network Controller manages the network connections and the switching between different
technologies in the testbed. For example if a problem occurs in the communication of the
resource with the RC and subsequently with the Experiment Manager on the RAWFIE
middleware, a fall-back interface is engaged. Through this procedure, the other networking
interface/device is enabled to avoid the uncontrolled operation of the mobile unit and associated
damages in the infrastructure. In addition this component is responsible for security issues. The
switching alternative can be also triggered by the executed experiment.

ID
(Priority)

Description Requirement Mapping

TB-NEC-001
(MEDIUM)

The RAWFIE communication
resources shall be managed to offer
seamless connectivity in the normal
operations of the system.

TB-NEC-002
(MEDIUM)

Provision of network
communication resource

TB-NEC-003
(MEDIUM) Alternative communication system

TB-NEC-004
(MEDIUM)

Management of the communication
system

TB-NEC-005
(MEDIUM)

Time constraint verification and
notification

Responsibilities
The main responsibilities of network controller are:

• Provision of the network connections/technologies required during an experiment
• Enable switching between network technologies
• Check the communication when devices are moving between obstacles
• Verification that the time constraints specified on the exchanged data for the different types

of UxVs are met.
• Sends notifications produced in message bus to Resource controller and System Monitoring

Service when the time constraints are not met via a specific network
•

Operations and attributes
The main operations of network controller are to start and to stop network connections between
UxVs and the testbed for each experiment. When an experiment starts, Resource Controller via
an implemented interface informs the network controller to start the function
InitiateConnection(). When an experiment stops then Resouce Controller informs the Network
Controller to stop network connection between UxVs via function StopConnection(). For each
experiment Network Controller checks periodically with CheckStatusConnection() the state of
the network. In case that UxVs should change from one network technology to another, Network
Controller runs a decision support tool OptimalNetworkConnection() in order to decide which
technology should be initiated..

 D4.5 - Design and Specification of RAWFIE Components (b)

102

Figure 63 - Network Controller Class Diagram

Starting an experiment

1. RC sends to NC request to initiate a network connection
2. NC initiates the specific network control and answers to RC
3. NC periodically reports the state of the network
4. RC sends a request to stop the network because the experiment will stop

Figure 64 – Starts New Experiment Connection Provisioning

Dynamically change of network technology

1. RC sends to NC request to initiate a network connection
2. NC initiates the specific network control and answers to RC
3. NC periodically reports the state of the network
4. NC is triggered for low performance of network

 D4.5 - Design and Specification of RAWFIE Components (b)

103

5. NC periodically checks network connection OptimalNetworkConnection() in order to
decide if the quality of the connection is good and if not which connection should be
established between the UxVs

6. NC informs RC that stops the network connection
7. RC sends to NC request to initiate a network connection
8. NC initiates the specific network control and answers to RC
9. RC sends a request to stop the network because the experiment will stop

Figure 65 - Change Connection during an experiment

Interactions and relationships with other components
The Network Controller interacts with the Resource Controller in order to acquire information
from the UxVs.
Monitoring Manager can also gather statistics for the network technologies and status of the
experiments.

4.3.4 Resource Controller (plus Navigation Service sub-component)
The core component of the navigation system is the Resource Controller which ensures the safe
and accurate guidance of the UxVs based on the user's preferences. Additionally, Resource
Controller commands each device to switch onboard sensors on and off.

 D4.5 - Design and Specification of RAWFIE Components (b)

104

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with
component’s functionalities

TB-REC-001
(MEDIUM)

RAWFIE platform shall support a semi-
autonomously way of navigation of the UxVs

Navigation_Service is
responsible for this feature

TB-REC-002
(MEDIUM)

RAWFIE platform should be able to activate
the “Emergency Scenario”

Event_Handler, will do this in
future

TB-REC-003
(HIGH)

The Resource Controller shall receive location
messages from the vehicles at regular intervals

Navigation_Service is
responsible for this feature

TB-REC-004
(HIGH)

The Resource Controller shall transmit the next
location for the current experiment to the
vehicles

Navigation_Service is
responsible for this feature

TB-REC-005
(HIGH)

The Resource Controller shall be able to plan
the next location that will be transmitted in the
vehicle taking into account the locations of all
UxVs that are active in that testbed

Navigation_Service is
responsible for this feature

TB-REC-006
(HIGH)

For the experiment accomplishment the
Resource Controller shall operate in close
coordination with the Experiment Controller

Navigation_Service and
Event_Handler will be
responsible for this feature

Responsibilities
The main responsibilities of the Resource Controller are:

• Translate and transmit the experimenter’s instructions to the vehicles	
• Calculate the optimum trajectory for each vehicle	
• Resource controller evaluates user's preferences and calculates the near-optimal path that

the vehicles should follow in order to reach the desired location.
• The Resource Controller is able to detect and identify possible safety violations. If the

given instructions violate the safety constraints, for example, the experimenter guides 2
units at the same position, the Resource Controller ignores these directions and returns
appropriate warning messages to the user.

• The path planning algorithm takes into account the location of all the UxVs

Operations and attributes

 D4.5 - Design and Specification of RAWFIE Components (b)

105

Figure 66: Resource Controller – Class diagram

Navigation of the UxVs	
1. For each waypoint, the Resource Controller evaluates the desirable position and

calculates the near-optimal path that the vehicles should follow in order to reach this
location. CAO (Cognitive Adaptive Optimization) class is responsible for the calculation
of the trajectory. CAO class is part of the Navigation Service sub-component	

2. The path planning algorithm takes into account the current location of the vehicles, the
model of the UxVs, navigational obstacles, the system dynamics etc. Collision Avoidance
class is responsible for this task.	

3. The Resource Controller translates this path into a sequence of waypoints and transmits a
compact file with the desired coordination and the orientation of the vehicle to the UXV
node.	

4. At each time-step, the Resource Controller transfers only one waypoint to the UxV
devices through the corresponding communication interface (using the message bus)	

5. When all the UxVs reach the desired location they inform the Resource Controller
regarding their current location, their orientation and their battery level.	

6. The Resource Controller, taking into account the actual location of the vehicles
recalculates the near-optimum path and transmits to the UxVs the next set of waypoints	

7. The turn concludes when all the units reach their final location.	

 D4.5 - Design and Specification of RAWFIE Components (b)

106

8. At each timestep, the Resource Controller interacts with the Experiment Controller, so as
to inform the Monitoring Tool about the status of the experiment.	

Protection of the Equipment:

1. If one of the following conditions occurs, automatically, the component activates,
through the Event Handler Mechanism class an emergency scenario. 	

o The component does not receive any feedback from the units for several time
steps

o The component receives feedback from the units which report severe localization
issues

o The component identifies crucial low battery levels
2. In such a situation, the Resource Controller navigates the units back to a safe position, as

soon as possible. 	
3. The experimenters receive appropriate warning messages through the Experiment

Monitoring Tool 	
	

Figure 67: Resource Controller – Sequence diagram

 D4.5 - Design and Specification of RAWFIE Components (b)

107

Interactions and relationships with other components
Required interfaces:

• Access to testbed and UxVs
The Resource Controller communicates with all UxVs in the testbed and the testbed itself
to navigate the vehicles

• Access the Experiment Controller: So as to read the user's instructions
• Access the Monitoring tool: So as to inform the experimenters about the current status of

the experiment

4.3.5 UxV Proximity component
This section presents the design of a low power wireless proximity component for the unmanned
vehicles (UxV) taking part to the Rawfie platform as an element of a Testbed. The main
objective of the proximity component is to allow members of a swarm of autonomous vehicles to
discover the existence and possibly interact with each other with very low latency without
depending on the Rawfie middleware or any other ground equipment.

Component requirements as identified in D3.2

The table below shows RAWFIE requirements extracted from D3.2 for which the proximity
component is useful and helps satisfying.

ID
(Priority)

Description Requirement Mapping with
component’s functionalities

PT-NAV-T-001 (HIGH) This component will provide to
the user the ability to remotely
navigate a squad of UxVs
through a user friendly
interface.

Neighbours detection,
identification, distance
estimation, collision avoidance,
navigation (heading)

TB-NEC-003
(MEDIUM)

Alternative communication
system

Implements the alternative
communication system, relay for
UxV’s disconnected from the
main network (communication
services)

TB-NEC-004
(MEDIUM)

Management of the
communication system

Signals strength measurement on
the proximity radio interface,
diffusion of primary radio
interface link quality status (self
checking, management services)

TB-REC-002
(MEDIUM)

RAWFIE platform should be
able to activate the
“Emergency Scenario”

Use the proximity component to
find or communicate with a lost
UxV (beaconing and emergency
services)

TB-REC-003 (HIGH) The Resource Controller shall
receive location messages from

The Proximity component
exposes the perceived

 D4.5 - Design and Specification of RAWFIE Components (b)

108

the vehicles at regular intervals neighbourhood information in
the report sent to the Resource
controller (neighbourhood
information service)

UXV-NET-002
(MEDIUM)

UxVs should be able to
Synchronize their Time-
References between them.

Time synchronisation using the
proximity component
(synchronisation service) in case
of failure of the primary
communication interface.

UXV-NET-004 (HIGH) Each UxV node shall be
equipped with primary and
secondary communication
means.

Secondary communication
interface, redundancy (RAWFIE
communication services)

UXV-NET-005
(MEDIUM)

UxV network interface
management

The proximity component will
provide a management interface
(management services)

UXV-NET-008
(MEDIUM)

Neighbouring UxV monitoring Neighbours detection, distance or
proximity estimation, publication
of position and speed vector as
well as status (Neighbour
monitoring services)

UXV-NET-009 (HIGH) Each UxV node should be able
to send navigation state
feedback with at least 2 Hz
frequency and maximum 1 sec
latency when within radio
communication reach.

Navigation information
publication for the
neighbourhood with strict real
time constraints (real-time
communication services for
exchanging navigation

UXV-PRC-001 (HIGH) Each UxV shall be able to
operate autonomously.

Enables autonomous operation in
swarms.

UXV-PRC-002
(MEDIUM)

The UxV should provide
collision avoidance mechanism

Neighbours detection, distance or
proximity estimation, publication
of position and speed vector,
distance estimation (anti-
collision service)

UXV-PRC-004
(MEDIUM)

UxVs should be able to
cooperate during the execution
of an experiment.

Direct, real time communication
between neighbouring UxV’s

Responsibilities
The proximity component is a local communication mean offering neighbour discovery and
publish-subscribe services. Its responsibilities are:

• Translate subscriptions received from other nodes through the proximity component radio
interface and forward them to the other UxV components.

• Subscribe to and receive topics published by the other UxV components.

 D4.5 - Design and Specification of RAWFIE Components (b)

109

• Access to some UxV component properties such as identifier, status, etc…

• Translate subscriptions coming from other UxV component into proximity component
subscriptions.

• Forward data received from the proximity component radio interface to the other UxV
components subscribing to it.

The discovery of neighbours is provided by the subscription to some identification service.

Operations and attributes
The UxV Proximity component provides an interface available to all inner UxV components for
the subscription to topics published by other robots over their secondary communication
interface (the proximity component radio). The proximity component is shared into two parts:
the Proximity Head implements the publish-subscribe service on the secondary communication
interface controller. The Proximity Delegate is the part of the component that runs on the UxV
main computer alongside the other UxV components.
In particular, the Proximity Head executes the Publish-Subscribe protocol, forwards uplink
subscriptions (coming from other UxVs) to the Proximity Delegate and transmits publications
form its own UxV submitted by the Proximity Delegate. The Proximity Head also manages
subscriptions made by its own UxV through the delegate and filters incoming uplink traffic
accordingly before sending it up to the delegate.
The Proximity Delegate interacts with the other UxV components and forwards their requests
and data to the Proximity head over a serial line. In the downlink direction, subscriptions from
the UxV Node are translated from the Rawfie middleware world (Kafka) into a more compact
format accepted by the proximity component protocol. Data publications are filtered with respect
to content, context and delivery specifications. In the uplink direction, the Proximity Delegate
receives subscriptions from other vehicles sent-up by the Proximity Head and translates them
into Rawfie middleware subscriptions by subscribing to the related topics. The same is done with
uplink data, which is translated and published within the primary Rawfie “world”.
The class diagram in the following picture shows the decomposition of the Proximity component
into head and delegate. The deployment diagram in the subsequent picture, shows how the
proximity component decomposition fits into hardware.

 D4.5 - Design and Specification of RAWFIE Components (b)

110

Figure 68: UxV Proximity component class diagram

Figure 69: UxV Proximity Deployment diagram

The proximity component operation available the other UxV component are given below. The
data and parameter types are generic because what they are in practice depends on the V
implementation.

Content and context based subscribe service:
The subscribe service is an extension from the corresponding primitive in CCBR [11] in the
sense that the lease time parameter (duration of a subscription) is extended to a full “delivery
specification” containing lease time and real time constraints as well as maximal traffic
parameters. Real time constraints pertain to performance metrics such as delivery period, latency
and jitter. The maximal traffic parameters describe the maximal throughput allowed for a given
subscription.

 D4.5 - Design and Specification of RAWFIE Components (b)

111

The additional data parameter of the CCBR subscribe primitive is removed here for two reasons.
The first reason is that the delivery specification contains enough information for the publishing
node to infer which system or sensor it should activate to be able to produce the data. The second
reason is that in the world of Rawfie, a command may be issued at any time, not only when a
subscription is started like in CCBR. Thus it is better to pass commands to the publish service
primitive.

subscribeTo(contentFilter df, contextFilter pf, deliverySpec ds, receiver rc)

 contentFilter df description of the data topic which is subscribed to (topic name and operators
on values).

 contextFilter pf description of the requested publisher context as a filter on an arbitrary number
of system properties.

 deliverySpec ds instructions for the publisher on the size, rate and timing minimas and maximas
that are requested for a valid publication. If a candidate publisher cannot
respect the delivery specification, it does not publish the requested topic.

 receiver rc reference to the handler to which incoming data shall be delivered (e.g. receive
call-back)

 Return value Success or error code.

Publish service
The publish primitive takes a topic name and a reference to the data to be published. The
publish-subscribe layer is responsible for filtering.

publish(topic t, data d)
 topic t Topic name.

 data d Reference to the outgoing data.

 Return value Success or error code.

Note that the above primitive can be used to send a command to another UxV (or a set of UxVs),
that had previously subscribed to it (i.e. expressed its interest to receive commands). As a matter
of fact, topics can be defined to establish communication “pipes” across the UxV swarm for
many purposes, including control.

Start
Enable the proximity component, start the services.
start(deviceManagement m)

 deviceManagement m Reference to the UxV Device Management component for access to the UxV
properties.

 Return value Success or error code.

 D4.5 - Design and Specification of RAWFIE Components (b)

112

Stop
Disable the proximity component, stop all its services.

stop()

 Return value None.

Set
Modify a property of the proximity component.
set(objectID oid, value v)

 objectID oid Identifier of the property to be modified.

 value v New value of the property.

 Return value Success or error code.

Get
Get the current value of a proximity component property.
get(objectID oid)

 objectID oid Identifier of the property to be read.

 Return value Current property value.

Data available
Pass data produced by a UxV component to the Proximity Delegate. Depending on the
implementation, the operation may be implicit (return of the getData() operation on the UxV
component).
dataAvailable(data d, topic name t)

 data d Data sample or array

 topic t Data topic identifier

 Return value Current property value.

Internal operators

Some of the UxV Proximity component internal operators are shown as public in their respective
classes because they are either Proximity Head operators used by the Proximity Delegate or
Proximity Delegate operators used by the Proximity Head:

Proximity Delegate:

• processInData(): used by the Proximity Head to pass incoming data that corresponds to
an on-going subscription to the delegate. The delegate forwards the data to the

 D4.5 - Design and Specification of RAWFIE Components (b)

113

subscribing component. How this is done practically depends on the particular UxV
implementation.

• processInSubscription(): when the Proximity Head receives a subscription from a distant
UxV, it calls the Delegate method processInSubscription() so that the relevant data can be
gathered from the producing UxV component.

• filterOutData(): this internal operation of the Delegate filters the data produced by the
other UxV component according to the on-going subscription so that it is ready to be
published by through the Proximity Head.

• registerSubscription(): record the subscription submitted by a UxV Component calling
subscribeTo().

Proximity Head:

• publish(): this is the send function of the Proximity Component. It is called by the
Delegate to trigger the publication of filtered data.

• filterInData(): this Proximity Head operation filters the incoming traffic according to the
current subscriptions of the UxV. The data is then passed on to the Proximity Delegate
through processInData().

• broadcastSubscription(): broadcast a subscription on the secondary communication
system. This operation is not necessary if subscriptions are only registered locally and
publications are spontaneous regardless of on-going subscriptions.

• registerSubscription(): record a subscription submitted by the Proximity Delegate
through subscribeTo() to allow the filtering of incoming data.

• sendToRadio(): submit outgoing data to the secondary communication system for
transmission.

• receiveFromRadio(): data reception call-back from the secondary communication
system.

Interactions and relationships with other components
The Proximity Component shall be able to interact with any other component present on the
UxV:

• A UxV component shall be able to register its interest with the Proximity Component to
receive particular data (e.g. identification, position, speed) from another UxV. This is
done through the subscribeTo() operation. UxV components shall have a receiveData()
operation so that the Proximity Component can pass on incoming data that corresponds to
a registered subscription.

• The properties, statuses and data flow produced by a UxV component that are of interest
for direct publication to neighbouring UxVs shall be made available to the proximity

 D4.5 - Design and Specification of RAWFIE Components (b)

114

component. These operations are named getData() and getProperty() in the class diagram
of the component

The communication between the UxV components and the Proximity component goes through
the Proximity Delegate. How it is done in practice depends on the UxV implementation and
operating system (e.g. ROS topic, direct calls, file access, …).
The UxV shall provide a UART interface (hardware and software) to the proximity component
radio (i.e. the local communication system).

Sequence diagram: neighbours discovery and position
The following sequence diagram depict the operations of the proximity component by means of
an example:
The UxV Node component of a UxV wants to know the position of other UxVs in its vicinities in
real time. Therefore, it subscribes to the topic “position” with the filter “any UxV” and delivery
specification “every 250 ms” at its Proximity Delegate. The subscription is propagated and
eventually the neighbouring UxV publish the required data, which is then passed on to the UxV
Node subscriber.
The sequence diagram of in the following picture shows the UxV Node subscribing to the
position topic. The subscriber specifies the content (i.e. the topic name and filter), the context
(the desired properties or status of the publisher) and the delivery specification (here the period).
The Proximity Delegate registers the subscription and passes it on to Proximity Head which also
registers it. Then the subscription is regularly broadcasted by the Proximity Head on the
secondary communication system for the attention of potential publishers in the neighbourhood.
If the number and throughput of the available topics are sufficiently limited, an alternative
implementation could use local subscription only and the spontaneous broadcast of all available
topics by publishers. In the opposite case, the actual dissemination of the subscriptions is
necessary to avoid overloading the communication channel with unnecessary publications.

Figure 70: Sequence diagram - topic subscription at the Proximity component

 D4.5 - Design and Specification of RAWFIE Components (b)

115

The following sequence diagram shows how the received subscription is managed at a publisher
and how the produced data is published. Following the example, the “position” topic is published
by the UxV Sensor and Localization component.
Subscriptions received by the Proximity Head are passed on to the Delegate which gathers the
data from the relevant UxV component. The Delegate is notified [dataAvailable()] each time
new data is available. The data is filtered before being passed down to the Proximity Head which
broadcasts it on the communication channel. Filtering at the delegate is used to ensure that data
sent on the channel does not exceed the delivery specification of the registered subscriptions. For
instance, if the subscribers wants a position every 250 ms and the data is produced by the UxV
Sensor and Localisation every 5 ms, the filterOutData() operation of the delegate sends only one
out of each 50 samples to the Proximity Head.
Filtering may also include compressing or encoding the data to limit bandwidth usage.
Depending on the implementation on a particular UxV, the filtering may be implicit, e.g. when
the getData() operation of the producer component allows selecting data according to the
subscription delivery specification.

Figure 71: Proximity component subscription reception and data publication sequence diagram

Finally, the last sequence diagram depicts how data is received, filtered and dispatched at the
subscriber. The receive() operation of the Proximity Head denotes the data reception call-back
from the radio communication stack. The data is then filtered according to the registered
subscription, passed on to the Delegate which dispatches it to the subscribing component.

 D4.5 - Design and Specification of RAWFIE Components (b)

116

Figure 72: data reception at the proximity component sequence diagram

4.3.6 Testbed Manager
The Testbed Manager is responsible for the administration of the devices of each one of the
federation testbeds as well as the operational control of all testbed components needed for the
successful execution of each experiment.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping with
component’s functionalities

TB-MAN-001
(HIGH)

Testbed Manager shall
support permanent storage
of all testbed attributes and
resources attributes that
belong to testbed

A local database is implemented at local
level with all Testbed Manager classes
having access to it

TB-MAN-002
(HIGH)

Testbed Manager shall
provide information about
the capabilities of each
resource node

The capabilities of each resource node are
presented through ShowUxVDetails() of
UxV class

TB-MAN-003
(HIGH)

Testbed Manager shall
check periodically the
status of all other services
running at testbed level

Testbed Services class implements this
functionality

 D4.5 - Design and Specification of RAWFIE Components (b)

117

TB-MAN-004
(HIGH)

Testbed Manager shall
contain a registration log
for all the experiments
executed in the testbed

This functionality is provided with the
help LogExperiment() operation of the
Experiment class

TB-MAN-005
(HIGH)

Testbed Manager shall be
periodically informed
about the status of all
running experiments in the
testbed

CheckExperimentStatus() (Experiment
class) receives periodically the status of
all running experiments from Resource
Controller

TB-MAN-006
(MEDIUM)

Testbed Manager shall
store configuration
parameters for the UxVs in
the relevant testbed

This functionality is provided from
ConfigureUxV() operation of the
Experiment class

TB-MAN-007
(HIGH)

Testbed Manager shall
implement a user interface
to support the interactions
between testbed operators
and machines

UxV class provides the ability to add and
remove resources (addNewUxV() and
removeUxV())

TB-MAN-008
(HIGH)

Testbed Manager shall be
capable to handle
temporary interruption of
communication and store
data locally in case of
transmission failure

StartStoreData() and StopStoreData()
implement local storage in case of
temporary communication failure

TB-MAN-009
(LOW)

Testbed Manager may
provide statistical
data/information about
testbed operation

Testbed Statistics class provides this
functionality

Responsibilities
The main responsibilities of the Testbed Manager are:

• Provide a user interface through which a user can add new testbed resources and view the
capabilities of each resource node

• Periodically check the status of all other services running at testbed
• Keep a registration log for all the experiments in the relevant testbed
• Store configuration parameters for the UxVs in the relevant Testbed
• Buffer data in case of network connection loss to the Middle Tier. The TM stores the last

instance of each experiment as a fall back mechanism in case that testbed loses the

 D4.5 - Design and Specification of RAWFIE Components (b)

118

connection with the middle tier. If there is a network problem during the execution of the
experiments, TM stores the information that would be forwarded to the Data tier.

• Provide the required interfaces to interact with SFA Aggregation Manager

Operations and attributes
The structure of Testbed Manager is depicted in the class diagram of Figure 73, where the
associations and operations of its core sub-classes are presented. A permanent storage in the
form of a local database is implemented at testbed level with all classes enabled to access it. The
component contains the UxV class through which the testbed operator can add and delete
resources and view the exact details of each resource registered in the testbed. Through the SFA
AM Driver class these resources are transformed in SFA-compliant format and communicated to
the SFA Aggregate Manager component which is responsible for the SFA-based federation of
RAWFIE Testbeds.
The Experiment class of Testbed Manager is responsible to register each new experiment locally
taking the information provided from Experiment Controller after the validation of the
experiment. Beyond of storing the details of the new experiment in the local database
Experiment class receives the status from Resource Controller at regular intervals containing
information of all UxV resources participating in the experiment and logs locally the start and
stop as well as all emergency events of the experiment.
The Testbed Services class is responsible to collect the status of all the other components that run
at testbed, inform the platform (System Monitoring Service) about the overall status and take the
appropriate actions in cases of non-responding components. Emergency class contains all the
functionality needed to activate local storage for the experiments execution in the case of
network problem and connection loss with the middle-tier. Finally the Statistics class can present
information about the utilization of the testbed or specific resources in user defined temporal
intervals.

 D4.5 - Design and Specification of RAWFIE Components (b)

119

Figure 73: Testbed Manager – Class Diagram

Testbed level experiment handling

The sequence diagram of Error! Reference source not found. Figure 74 presents sequence of
actions related to experiment handling at testbed level:

1. Testbed Manager receives StartNewExperiment message from platform Message Bus
2. RegisterNewExperiment() operation is called to write all required information about the

new experiment in the local database.
3. Testbed Manager receives periodically a message about the current status of the

experiment from Resource Controller
4. LogExperiment() operation is called to store in the local database a trace of experiment

execution steps
5. A user can ask information about what experiments have been executed in the testbed

within specific temporal intervals and get the results through ShowExperimentsHistory()

 D4.5 - Design and Specification of RAWFIE Components (b)

120

Figure 74:Testbed Manager experiment handling sequence diagram

Monitor Testbed components
The sequence diagram of Error! Reference source not found. Figure 75 presents the sequence
of actions contained in the TestbedServices class of Testbed Manager:

1. Other components running at testbed level namely Resource Controller, Network
Controller and Monitoring Manager send a message about their status at regular intervals
using the local message bus.

2. Testbed Manager periodically creates an overall assessment about testbed components
based on received messages and creates the status message using CreateStatusMsg()

3. Testbed Manager informs System Monitoring Service about the status of all testbed
components using the platform Message Bus (UpdateTestbedStatus).

 D4.5 - Design and Specification of RAWFIE Components (b)

121

Figure 75: Testbed components monitoring sequence diagram

4.3.7 Aggregate Manager

Aggregate Manager (AM) allows testbeds to securely expose their resources to the federation
and enables users to reserve them by exchanging XML RSpecs files. An RSpec lists information
about the resources (nodes) of each testbed formed in an XML format.

Component requirements as identified in D3.2

ID
(Priority)

Description Requirement Mapping

PT-GEN-R-
001
(HIGH)

RAWFIE Platform should adopt Sliced
Federated Architecture (SFA)

It would be implemented in the
second development iteration cycle

PT-DIR-S-
003
(HIGH)

The Testbed Directory Service shall
provide access to information about
available resources (UxVs) belonging
to the testbeds registered in RAWFIE

It would be implemented in the
second development iteration cycle

Responsibilities
The main responsibilities of the Aggregate Manager component are:

• Implements Aggregate Manager (AM) API in order to
o Get a list of the available resources
o To allocate resources to a slice
o To retrieve a manifest Rspec describing the resources in a specific slice
o To provision the state of the allocation of the resources
o To de-allocate resources
o To retrieve the status of the allocated resources by experimenters

 D4.5 - Design and Specification of RAWFIE Components (b)

122

• Publish all the aforementioned services of AM API to Web

Figure 76: Aggregate Manager – Class Diagram

Get List of the Resources

1. Experimenter requests from SFA_Service the list of resources in the specific testbed
2. This request is forwarded to the AM of the specific testbed
3. AM checks the local database (Testbed_db) for the requested resources
4. AM returns the list of the resources if there is success. Otherwise an error message is

returned to the SFA_service and consequently to the Experimenter.

Figure 77: Aggregate Manager- get the list of available resources sequence diagram

Allocate Resources

1. Experimenter requests from SFA_Service to allocate specific resources.
2. This request is forwarded to the AM of the specific testbed

 D4.5 - Design and Specification of RAWFIE Components (b)

123

3. AM checks the local database (Testbed_db) for the requested resources
4. AM forwards the request to Testbed Manager for

a. Check the Master Data Respository for the availability of the resources
b. To allocate the resources in the Master Data Repository

5. In case of the successful allocation of the resources in the Master Data Repository,
Testbed Manage returns the success message; otherwise an error message.

6. AM updates the local database based upon the answer of Testbed Manager
AM returns the answer to the SFA_service and consequently to the Experimenter

Figure 78 – Aggregate Manager allocate resources sequence diagram

4.3.8 UxV Node

The UxV Node is a mobile system that interacts with the other Testbed entities (proxy, other
UxV’s). It can be remotely controlled or able to act and move autonomously, as programmed
before the start-up of the experiment or as programmed during the execution of the experiment,
e.g. in real-time. A UxV node interacts with the other RAWFIE components through the
Message Bus, using the RAWFIE protocol defined in the remainder of the section, which
conveys message according the AVRO structures (see Section 4.3.9). Examples of the
implementation on two different platforms are given at the end of the section.
The basic requirements a generic UxVs Nove should satify, in order to make it possibile to use ot
within the RAWFIE platform (to “plug-in” within an existing Testbed, for example), have been
identified by the consortium partners and are listed in Error! Reference source not found..
Supported sensors that UxV may embeds are defined in section 4.3.9.

 D4.5 - Design and Specification of RAWFIE Components (b)

124

TB-UVG-001 Compliance of UxV to RAWFIE specification and interfaces
UXV-NOD-001 Each UxV shall have a unique Identification code.
UXV-NOD-002 Each UxV node should ensure a minimum autonomy of 15-30 minutes
UXV-NOD-003 Each UxV node should ensure payload
UXV-NET-001 Capability of taking the control of the UxVs from distance
UXV-NET-002 UxVs should be able to Synchronizs their Time-References between them.
UXV-NET-003 The UxV should provide Access Point functionality
UXV-NET-004 Each UxV node shall be equipped with primary and secondary communication

means.
UXV-NET-005 UxV network interface management
UXV-NET-006 UxV communication interoperability with RAWFIE (inbound)
UXV-NET-007 UxV communication interoperability with RAWFIE (outbound)
UXV-NET-008 Neighbouring UxV monitoring
UXV-NET-009 Each UxV node should be able to send navigation state feedback with at least

2 Hz frequency and maximum 1 sec latency when within radio communication
reach

UXV-SEN-001 Each UxV node should tag location and timing capability to each sensor
readings

UXV-SEN-002 Each UxV node shall be able to list the available sensors
UXV-SEN-003 UxV location and sensor data should be made available to the experimenter
UXV-SEN-004 Location sensors should be supported in each UxV unit and can be used

remotely during testbed demonstrations
UXV-SEN-005 UxVs should sent a notification to the Resource Controller when they reach

the desired location
UXV-STO-001 UxVs shall be able to store data on board
UXV-STO-002 UxV’s shall provide a management tool of the available storage
UXV-STO-003 UxV’s shall provide an authorized access to the data management tool.
UXV-STO-004 UxV’s shall provide a data log
UXV-STO-005 UxV’s may provide an automated syncing of servers
UXV-PRC-001 Each UxV shall be able to operate autonomously
UXV-PRC-002 The UxV should provide collision avoidance mechanism
UXV-PRC-003 Capability of task planning of the UxVs nodes during run-time
UXV-PRC-004 UxVs should be able to cooperate during the execution of an experiment
UXV-PRC-005 Each UxV node shall keep position while waiting for new instructions
UXV-MGT-001 UxVs shall offer on demand resources (Network, Sensor, Processing, and

Controller).
UXV-MGT-002 UxV shall be capable to revert to a safe mode
UXV-MGT-003 UxV shall be capable to restart each component independently
UXV-MGT-004 UxV shall be capable to monitor the health of the system
UXV-MGT-005 UxV shall be capable to enable/disable each component
UXV-MGT-006 UxV shall be capable to offer safe maintenance access for manufacturers

Table 1: List of requirements for an UxV node to be used in RAWFIE

 D4.5 - Design and Specification of RAWFIE Components (b)

125

The UxV Node component provides an abstraction layer (e.g. software adaptors) to the
unmanned vehicle to make it appearing as a RAWFIE compliant component. It provides
interfaces to the robot operation resources such as setting the robot waypoints and speed or real-
time remote control, but also every other resource of the robot accessible by the system.
In the present document and from now on, the common characteristics each UxVs should ensure
are identified:

• The UxV Node is referred as the main (hardware / software) interface between the
RAWFIE platform and the UxV’s. According to the successfully tested implementation,
this interface is programmed by robot manufacturers in order to provide a Message Bus
adapter.

• Kafka Message Bus and the Confluent schema-registry are the tools that have been
chosen for the communication with the RAWFIE platform components. A specific set of
common messages has been defined to cover the general functionalities of UxV’s within
RAWFIE system.

• This set of messages is gathering not only the data expected from the robot but also the
commands that the robot is expecting in order to operate.

• A common data format allows the system to access this data remaining agnostic of the
robot operation. It is permitting also the use of a common database.

• The former UxV Components distribution still makes sense as a generic view of the
expected functionalities of the UxV’s.

• The following subset of components (Error! Reference source not found.) is no longer
relevant for the whole RAWFIE platform but somehow interesting for the manufacturers
and their singular approach for programming the UxV Node Interface.

 Main responsibilities
Node Provide an interface to the robot control mechanisms (waypoints, speed, remote

control) and publish the robot localisation information and odometry.

Network and
Communication

Operate the vehicle network interfaces to provide reliable message exchange and
data transfer services with external entities (testbed, other UxV’s). Dispatch
messages (including commands) to the intended UxV component. Handle
subscriptions to data streams and transmit them.

Sensor and
Localisation

Give a high-level interface to access the sensors installed on board the UxV.
Publish the sensor readings and keep a description of all activated sensors.

On-board storage Define a data stream abstraction that includes metadata. Allow data streams to be
saved in permanent storage and/or be published for transmission.

On-board
processing

Connect data streams to on-board processing algorithms and publish the resulting
output after checking for sufficient computing and energy resources. Allow the
installation of new data processing algorithm and keep a registry.

 D4.5 - Design and Specification of RAWFIE Components (b)

126

Management Provide a centralised dashboard view and control of the UxV operations and
resources. Keep a searchable registry of the UxV functions and resources.

Table 2: Summary of UxVs functions

4.3.8.1 The RAWFIE UxV Protocol
The RAWFIE UxV Protocol was devised to abstract the differences between UxVs and expose a
simple, compact, extensible, and expressive interface to monitor and control UxVs in a platform-
agnostic way. New UxVs can therefore be added to the RAWFIE infrastructure by creating
adapters or translators to convert UxV specific information to the RAWFIE UxV Protocol. The
reference frame of the UxV is defined as follows and must be used in the messages described in
the next sections.

• Header

All messages of the UxV Message API contain the same header, used to encode basic
information about the dispatching entity.
Field Units Description
sourceSystem - Canonical name of the originating system
sourceModule - Canonical name of the module within a given system that originated the

message
time ms Time elapsed since the Unix epoch

• System Information

Each UxV shall periodically dispatch general system information in the form of the System
Information Message. This message allows other software modules to dynamically identify the
UxV.
Field Units Description
Vendor - UxV vendor/manufacturer
Model - UxV model
Type - UxV type
Name - UxV canonical name
Owner - UxV owner’s name

• Sensor Information

This message encodes basic information about a given sensor. This message allows other
software modules to dynamically identify the sensors installed on a UxV.

Field Units Description
Vendor - Sensor’s vendor/manufacturer

 D4.5 - Design and Specification of RAWFIE Components (b)

127

Name - Unique sensor name/model
Serial - Sensor’s serial number
Types - List of quantities that the sensor is able to measure

• CPU Usage

Amount of CPU resources currently in use.
Field Units Description
Value % Amount of CPU resources used by the UxV on-board software and associated

services
• Storage Usage

Measurement of storage usage
Field Units Description
Available MiB The amount of available storage
Used % Percentage of used storage

• Fuel Usage

Amount of available fuel
Field Units Description
Value % Amount of available fuel

• Location

The Location message encodes the position of the UxV in the World. It was designed to support
all kinds of UxVs even when they are not capable of localizing themselves in the World. This
message allows the UxV to encode its position in absolute (Latitude, Longitude, and Height) or
relative (North/East/Down) coordinates. This message shall be published to the message bus and
shall be consumed by any entity that needs to know the location of the UxV.

Field Units Description
Latitude rad Latitude in the WGS 84 reference coordinate system
Longitude rad Longitude in the WGS 84 reference coordinate system
Height m Height above the WGS 84 ellipsoid
North m The North offset of the North/East/Down field with respect to

Latitude/Longitude/Height
East m The East offset of the North/East/Down field with respect to

Latitude/Longitude/Height
Down m The Down offset of the North/East/Down field with respect to

Latitude/Longitude/Height
Depth m Optional field denoting the vertical distance of the UxV to the water surface

 D4.5 - Design and Specification of RAWFIE Components (b)

128

Altitude m Optional field denoting the vertical distance of the UxV to the ground
• Attitude

Angles describing the attitude of a rigid body (i.e., Euler angles).
Field Units Description
Phi rad Rotation around the body's longitudinal axis
Theta rad Rotation around the body's lateral or transverse axis
Psi rad Rotation around the body's vertical axis. A value of 0 means the body is

oriented towards true north
• Linear Velocity

Vector quantifying the direction and magnitude of the measured linear velocity that a system is
exposed to.
Field Units Description
X m/s X Component
Y m/s Y Component
Z m/s Z Component

• Angular Velocity

Vector quantifying the direction and magnitude of the measured angular velocity that a system is
exposed to.
Field Units Description
X rad/s X Component
Y rad/s Y Component
Z rad/s Z Component

• Linear Acceleration

Vector quantifying the direction and magnitude of the measured linear acceleration that a system
is exposed to.

Field Units Description
X m/s/s X Component
Y m/s/s Y Component
Z m/s/s Z Component

• Current

Measurement of electrical current.
Field Units Description
Value A Measured electrical current

 D4.5 - Design and Specification of RAWFIE Components (b)

129

• Voltage

Measurement of electrical voltage.
Field Units Description
Value V Measured electrical voltage

• Sensor Reading Scalar

This message is used to encode scalar measurements of sensors.

Field Units Description
Value - Measured value
Unit - Value's unit

• Abort

This command instructs the UxV to stop any executing actions and enter standby mode
• Goto

This command instructs a system to move to a given location at a given speed.
Field Units Description
Location - Desired location (see Location message)
Speed - Optional field defining the desired speed
Timeout s The amount of time to perform this command

• KeepStation

This command instructs a system to keep station at a given location.
Field Units Description
Location - Desired location (see Location message)
Speed - Optional field defining the desired speed
Timeout s The amount of time to perform this command
Radius m Tolerance radius around the desired location

4.3.8.2 An approach to existing implementations: ROS-based UGV
The ROS meta-OS is implemented on many existing UxV’s. Its runtime "graph" is a peer-to-peer
network of processes (potentially distributed across machines) and loosely coupled using the
ROS communication infrastructure itself. It has indeed different processes running for the UxV
control and the operation of sensors such as the publish/subscribe mechanism for sensor readings
and robot localisation information. Although many features of the UxV components are available
in ROS, the present design shall not depend on ROS as some UxV’s may not be equipped with it,
and, more importantly this design shall integrate the UxV’s into the RAWFIE ecosystem in a
way that is agnostic to their underlying operating platform.

 D4.5 - Design and Specification of RAWFIE Components (b)

130

As we have explained above, the responsibility of the UxV Node is to provide an interface to
make possible the operation of the robot throughout a common message bus, including:

• Process and execute robot steering commands (either waypoints or real-time remote
control commands).	

• Control the speed of the robot and enforce any safety rule given: no-go areas, minimal or
maximal altitude or depth, collision avoidance.	

• Estimate and publish the robot odometry and any other localisation and speed
information	

• Monitor the vehicle critical resources such as the battery. Take safety measures (e.g.
return to base) if energy is too low to complete the mission.�

• Publish identification information.

• Publish all the data gathered by the robot sensors

The actual development of this interface is based on Kafka, schema-registry and AVRO libraries
compatible with the robot software. In this case, several API’s have been studied and tested.
In the end, the python compatible libraries have been adopted for convenience.

The list of resources running with the interface is the following:

• AVRO 1.7.7
• KAFKA 2.10-0.8.2.0
• KAFKA-PYTHON API
• PYTHON-CONFLUENT-SCHEMA REGISTRY

The architecture of this ROS-KAFKA-AVRO interface remains very simple.
The automatic execution of python-coded nodes is subscribing the peer-to-peer data within ROS
framework, and then reformatting it into the AVRO common format. This schemed data is sent
through the KAFKA message bus with a simple kafka-publisher.
This way of operating stands for every sensor data and also localization, odometry etc.
On the other hand, a kafka-subscriber is set up to receive the agreed commands. This data is then
converted within the interface to a ros-understandable information, either a service or a control
topic.

4.3.8.3 An approach to existing implementations: USV implementation
OceanScan-MST software infrastructure is based on the "LSTS Toolchain"
(http://www.lsts.pt/toolchain) developed by the University of Porto. This toolchain comprises
three software components: DUNE: on-board software with modules for control, navigation,
simulation, networking, sensing, and actuation; Neptus: distributed command and control
infrastructure supporting the different phases of a typical mission life cycle: interactive planning,
simulation, execution, and post-mission data analysis; IMC: message set used by DUNE and
Neptus to interchange commands and data. All software modules are open-source and the source

 D4.5 - Design and Specification of RAWFIE Components (b)

131

code is published in the Internet under the European Union Public Licence V.1.1. With these
open-source software tools the user can reuse the existing code to access all data, and variables
provided by the vehicle's hardware at the maximum sampling rate. These can be raw sensor
readings, data processed by controllers or messages exchanged between components or even
other systems (other UxVs or any other system that uses the IMC message set). New software
routines can be easily created and interfaced with the original framework, or even replace
original routines.
For the purpose of the RAWFIE project OceanScan-MST developed OIRT (OceanScan-MST
IMC/RAWFIE Translator) a standalone software module written in Java to bidirectionally
translate IMC messages and related logic to messages in the Apache Avro data serialization
format used in the RAWFIE project. OIRT module interacts with IMC capable UxVs and the
Kafka Message Bus and is responsible for:

- Discovering UxVs on the local network via broadcast and multicast announcements
- Establishing and managing a stable network connection to each discovered UxV
- Receiving and decoding IMC messages from UxVs
- Gathering the required data to produce RAWFIE UxV Protocol messages from

information conveyed by IMC messages.
- Publishing RAWFIE UxV Protocol messages to the Kafka Message Bus
- Subscribing to RAWFIE UxV Protocol messages on the Kafka Message Bus
- Decoding RAWFIE UxV Protocol messages.
- Gathering the required data to produce IMC messages from information conveyed by

RAWFIE UxV Protocol messages
- Encoding and sending IMC messages to UxVs
- Guaranteeing that commands received via the RAWFIE Message Bus are valid and can

be safely executed

The OIRT software module acts as a proxy between the RAWFIE infrastructure and the UxVs or
corresponding simulated instance. This approach was chosen for three reasons:

• The on-board software of the UxVs does not need to be modified in any way to support
integration in the RAWFIE infrastructure

• The basic computational system of the OceanScan-MST UxVs is optimized for low
power consumption and therefore cannot run a Java Virtual Machine satisfactorily. It is
easier to develop this kind of software in a general purpose desktop computer than on an
embedded system.

• If the system is well designed it can later run on board each UxV if a auxiliary compute
is installed (as is envisioned).

4.3.9 AVRO formatted messages and Kafka Schema Registry

Next we will introduce some of the main tools making part of the custom solution to create a
common framework for every robot to adhere to RAWFIE agnostically of their system through
the Adaptor of the UxV Node.

4.3.9.1 AVRO
According to its own documentation, the apache avro tool is a data serialization system with
some useful capabilities.

 D4.5 - Design and Specification of RAWFIE Components (b)

132

https://avro.apache.org/docs/current/
Apache Avro™ is a data serialization system.
Avro provides:

• Rich data structures.
• A compact, fast, binary data format.
• A container file, to store persistent data.
• Remote procedure call (RPC).
• Simple integration with dynamic languages. Code generation is not required to read or

write data files nor to use or implement RPC protocols. Code generation as an optional
optimization, only worth implementing for statically typed languages.

Schemas
Avro relies on schemas. When Avro data is read, the schema used when writing it is always
present. This permits each datum to be written with no per-value overheads, making serialization
both fast and small. This also facilitates use with dynamic, scripting languages, since data,
together with its schema, is fully self-describing.
When Avro data is stored in a file, its schema is stored with it, so that files may be processed
later by any program. If the program reading the data expects a different schema this can be
easily resolved, since both schemas are present.
When Avro is used in RPC, the client and server exchange schemas in the connection handshake.
(This can be optimized so that, for most calls, no schemas are actually transmitted.) Since both
client and server both have the other's full schema, correspondence between same named fields,
missing fields, extra fields, etc. can all be easily resolved.
Avro schemas are defined with JSON . This facilitates implementation in languages that already
have JSON libraries.

4.3.9.2 Kafka Schema Registry
Schema Registry provides a serving layer for metadata.

• It provides interface for storing and retrieving Avro schemas.
• It stores a versioned history of all schemas, provides multiple compatibility settings and

allows evolution of schemas according to the configured compatibility setting.
• It provides serializers that plug into Kafka clients that handle schema storage and

retrieval for Kafka messages that are sent in the Avro format.

In the end this Schema Registry is heavily based on the Java API of Confluent Schema Registry.
See http://docs.confluent.io/2.0.0/schema-registry/docs/index.html for more info.
Kafka Clients
The main tool of the adaptors will be relying on a number of Kafka Clients.
According to Apache Org. we can find several clients that support different programming
languages such as Python, C++, Ruby etc. A complete list and useful documentation can be
found at https://cwiki.apache.org/confluence/display/KAFKA/Clients#Clients-Python
On the other hand, the common approach will be to use the Java main code base.
One way or the other, the adaptor activity described in a high level, will consist of publishing
and consuming specific avro-formatted messages. A helpful reminder of these concepts:

 D4.5 - Design and Specification of RAWFIE Components (b)

133

• Kafka maintains feeds of messages in categories called topics.
• We'll call processes that publish messages to a Kafka topic producers.
• We'll call processes that subscribe to topics and process the feed of published messages

consumers.
• Kafka is run as a cluster comprised of one or more servers each of which is called a

broker.

4.3.10 Common Sensors for UxVs

In the past sections we have described the adaptor between RAWFIE system and the robots.
Once the abstraction layer required by the project has been obtained, we will also point out some
of the most common specifications in the UxV’s frame.
A great number of sensors can be deployed within the robot with several different purposes. In
this section, we describe some of the most common, which may be present in every robot
adhering to the RAWFIE platform. This information also provides the needed framework to
understand what kind of common messages are to be exchanged between the UxV’s and the
RAWFIE components.

4.3.10.1 UGV common sensors

• 2D range finders
o This range finders such as laser scanners provide accurate high resolution data

necessary to achieve good results from SLAM algorithms. Most 2D range finders
feature a wide field of view and a wide sensing range useful for mapping and
obstacle avoidance.

• 3D Sensors
o Once of the most important recent developments in robotics sensors is the

production of low cost 3D range finders and RGB-Depth cameras. These sensors
open up a whole new dimension for robotics due to the huge number of their
application.

• Pose Estimation Sensors
o A pose estimation sensor may provide information about the absolute or relative

position and orientation of a robot. These sensors include gyroscopes,
magnetometers, accelerometers, satellite navigation systems, which are often
packaged together as a single hardware device with an internal state estimator
providing a fused output.

• Cameras
o Cameras provide image data to the robot that can be used for object identification,

tracking and manipulation tasks. A number of different cameras with different
specifications is available in the market, including monocular, stereo cameras and
those that include a pan-tilt-zoom mechanism (PTZ cameras). We should also
mention here the IP cameras (internet protocol cameras) that offer a ease of
connectivity.

 D4.5 - Design and Specification of RAWFIE Components (b)

134

4.3.10.2 USV sensors

• Acoustic Modem
• Side-Scan Sonar
• Single & Multi-beam Echo-sounder
• Forward Looking Sonar
• Digital Camera
• CTD sensor
• Water Quality Sensors
• Turbidity Sensor
• Scattering Sensor
• Fluorescence Sensor
• Doppler Velocity Log (DVL)

o For underwater vehicles, the bottom tracking feature can be used as an
important component in the navigation systems. In this case the velocity of
the vehicle is combined with an initial position fix, compass or gyro
heading, and data from the acceleration sensor. The sensor suite is
combined (typically by use of a Kalman filter) to estimate the position of
the vehicle.

• Sound Velocity Sensor (SVS)
• High Precision INS
• Long BaseLine (LBL)

o Long baseline systems determine the position of a vehicle or diver by
acoustically measuring the distance from a vehicle or diver interrogator to
three or more seafloor deployed baseline transponders. These range
measurements, which are often supplemented by depth data from pressure
sensors on the devices, are then used to triangulate the position of the
vehicle or diver.

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

135

5 Global Sequence diagrams showing main RAWFIE processes

5.1 Registration of Testbed Resources
The sequence diagram in Figure 79 shows a sample information flow with the components
involved in registration of a new resource in a specific, already registered, Testbed. As this is a
user process, the Testbed Administrator actor is involved:

1. The Testbed Administrator opens the Login page of the RAWFIE Web Portal (centralised
point for accessing the RAWFIE system features), and inserts the credentials

2. The user authentication process starts, involving the Users & Rights Service which, in
turn, make use of the Users & Rights Repository to check user’s credentials

3. Once the Testbed Administrator gets access to the platform, he/she may ask for the list of
available Testbeds, for selecting the Testbed the new Resource (UxV) has to be assigned
to. The Resource Explorer Tool is involved in this process, which is actually part of the
RAWFIE platform Web GUI

4. The Resource Explorer tool then, uses the Users & Rights Service and Repository, to
check if the user role has the capabilities to access such information

5. If yes, the actual requests for the Testbeds list, is forwarded to the Testbed Directory
Service, which will return back the list of available Testbeds, by querying the Master
Data Repository

6. The Testbed Administrator requests the assignment of the new resource to a specific
Testbed

7. Again, the role of the user is checked against the Users & Rights Repository, to ensure
the user has the capabilities to perform this operation

8. If yes, the actual resource assignment request is forwarded by the Resource Explorer Tool
to the Testbed Directory Service, and the new resource information is stored in the
Master Data Repository

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

136

Figure 79: Sequence Diagram for “Registration of Testbed Resources” process

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

137

5.2 Booking Testbed Resources (HAI)
The sequence diagram below depicts the sequence of actions involved in a successful booking
resource request. Booking resource request is implemented as a two step process requiring a
confirmation form a testbed authority:

1. The Experimenter loads the CalendarView page (initial page of Booking tool)
2. The Experimenter selects a specific datetime on the CalendarView and defines the

desirable time interval for booking resources (timeslot selection)
3. CreateBooking page is loaded showing the available resources for the selected period (the

resource information is retrieved from the Master Data Repository indirectly via the
Testbed Directory Service API)

4. Experimenter selects UxV resources and submits the booking request (addBooking()
method is called on the Booking Service)

5. After performing the necessary authorisation checks Booking Service performs its
internal actions and if successful, the booking request is persisted in the database with
status PENDING

6. Appropriate email notifications are sent to both the experimenter initiating the booking as
well as to the testbed operator responsible for approving it

7. Following the reception of booking notification an authorised Testbed Operator loads the
ApproveBooking page showing all pending booking requests

8. The Testbed Operator calls Booking Service approveBooking() method which after
checking for the proper authorisation performs all the internal logic required for
confirming the experimenter’s request

9. If no conflict or any other problem occurs, the booking request is CONFIRMED
10. Following the confirmation a BookingStatusMsg is sent to the Message Bus informing

any interesting consumer component, that the booking request has changed status
11. Both Experimenter and Testbed Operator are informed by appropriate email notifications

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

138

Figure 80: Sequence Diagram for “Booking Resource” process

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

139

5.3 System Monitoring
3. A Monitoring Manager of a Testbed publishes health status information about the

Testbed and UxVs to the related Message Bus topic
4. SystemMonitoringManager reads the status messages from the Message Bus and stores

the latest values per component internally
5. Internal timer of Icinga starts the monitoring procedure
6. A standard Icinga checker is executed to check a server (e.g. ping, CPU load, RAM

usage, HTTP alive)
7. Icinga calls JNRPE Server with the check_rawfie plugin
8. JNRPE Server requests the latest health status received via message bus from the System

Monitoring Service (getComponentServiceHealth_internal())
9. JNRPE Server returns the result
10. Icinage stores the results
11. Testbed Admininistrator requests the status dashboard from the System Monitoring Tool
12. The System Monitoring Tool calls getComponentServiceHealths() from the

SystemMonitoringManager
13. The SystemMonitoringManager requests from Icinga the health statuses via the MK-

Livestatus interface.
14. SystemMonitoringManager returns the health statuses
15. System Monitoring Tool renders the status page and returns it to the user

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

140

Figure 81: Sequence Diagram for “System Monitoring” process

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

141

5.4 Experiment Execution and Monitoring
The sequence diagram in Figure 82 shows a sample scenario where the Experimenter opens a
running experiment, gives directions, observes the results and visualises the scenario. Such
scenarios could be “environmental monitoring of water canals”, “border surveillance or
perimeter protection of large areas” and many others, as described in D3.1.

1. Prerequisites: the Experimenter is already logged in the system, an experiment is already
running and the Experimenter has the right to observe the experiment and do
modifications

2. The Experimenter starts the Experiment Monitoring Tool in order to view the available
experiments, then selects an already running experiment from the list

3. The Experimenter enters a new position for a specific UxV. This command is sent
through different modules to the Resource Controller, which converts it to a waypoint,
evaluates the path and sends it to the UxV

4. The UxV starts executing the command
5. The Experimenter opens the visualisation page
6. The Visualisation Engine gets the request from the Experimenter and retrieves the

available experiments for that user. The list of available experiments is presented. The
experimenter chooses the experiment and starts the visualisation

7. The Visualisation Engine gets the request for the chosen experiment and subscribes to the
topics that contain information about that experiment, the sensors and the UxVs that take
part in the experiment

8. When the UxV sends new information from its sensors – like movement, sensors’ data,
warnings, errors etc., then these messages are received by the Visualisation Engine
through the Message Bus

9. The Visualisation Engine updates and converts these messages to the proper format and
sends them to the Visualisation Tool, which presents them on the map and in the widgets

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

142

Figure 82: Sequence Diagram for “Experiment Execution and Monitoring” process

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

143

5.5 Experiment Measurements Recording
The sequence diagram in Figure 83 shows a sample information flow with the components
involved in the resources (UxVs) control, and in sensors measurements acquisition and storing.
The following are the sequence of actions executed by the involved components:

9. The Experiment Controller, upon reception of the experiment’s instructions from the
Launching Service (not indicated in the picture), publishes the instructions on the
dedicated Message Bus topics. Examples of instructions for experiment execution
include, but are not limited to, the indication of a particular path for each given resource
(UxVs), and the sensors that need to be activated for the experiment

10. The instructions are then consumed, from the same Message Bus topics, by the Resource
Controller on the Testbed side

11. The Resource Controller will, in turn, publish the commands for the UxVs to the specific
Message Bus topics: first the sensors activation commands are published, which are in
turn consumed by the involved UxVs

12. Then the Resource Controller publishes “Next Position” commands for the UxVs, after
elaborating the instructions received from the Experiment Controller and the position
updates (feedback) published by the UxVs themselves, and always communicated
through the Message Bus. This is a continuous, closed loop process, so that the Resource
Controller may keep control of the UxVs movements (path, waypoints, and so on), and
ensure UxVs safety

13. Together with the position updates, the UxVs also publishes all other expected sensors’
measurements

14. Sensors’ measurements are continuously consumed, besides the Resource Controller, by
the Measurements Backend Service component, which is in charge of ensuring the
persistence of the same data within the Measurements Repository, a NoSQL data storage

15. At runtime, other RAWFIE components such as the Visualisation Engine may directly
access the Measurements Repository data, to perform operations on the collected
historical information

It is important to notice that currently the Measurements Backend Service is still a conceptual
component. It needs to be practically defined and actually, the recording of the measurements in
the NoSQL data storage may be executed by:

a. The Experiment Controller itself, that always gets access to the acquired data
b. A dedicated Backend Service component, in charge of listening for new available

measurements to store them in the NoSQL data storage
c. A connector implemented using the Apache Kafka Connect component, available with

the Confluent platform

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

144

Figure 83: Sequence Diagram for “Experiment Measurements Recording” process

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

145

5.6 Authoring and Launching of an Experiment
The sequence diagram in Figure 84 shows a sample flow for authoring and launching an
experiment. The adopted steps are as follows:

1. The Experimenter books a testbed where the experiment will be executed.	
2. The Experiment gains access to the Authoring tool.	
3. The Experiment defines the experiment and gives commands to the tool.	
4. The Authoring tool performs a continuous validation process by communicating with the

Compiler and Validation Tool.	
5. The Compiler and Validation service communicates with the core validation service and

returns the results to the Authoring tool.	
6. The Authoring returns the retrieved messages to the Experimenter.	
7. The Experimenter, after the definition of the experiment, produces the required files to be

adopted by the remaining parts of the architecture.	
8. The Authoring tool invokes the Compiler and Validation Tool and, accordingly, the

required files are stored to the data repository.	
9. Finally, the Experimenter selects to launch an experiment by choosing its ID.	
10. The Launching tool sends the required message to the Experiment Controller that

undertakes the responsibility to control the execution process of the experiment.	
11. The Experiment Controller sends the appropriate commands to the Resource Controller

and, accordingly, the commands are transferred, by applying the necessary modifications
to the UxV nodes. 	

12. A continuous communication between UxV nodes and Resource / Experiment Controller
is held until the end of the execution	

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

146

Figure 84: Sequence Diagram for “Authoring and Launching of an Experiment” process

This project has received funding from “HORIZON 2020” the European Union’s Framework Programme
 for research, technological development and demonstration under grant agreement no 645220

147

5.7 Data Analysis
The sequence diagrams in the following pictures illustrates two distinct families of data analysis
tasks which are namely the data analysis tasks performed on data streams, the streaming tasks,
and the data analysis tasks performed on a fixed non-time-dependant data structures, the batch
tasks. Those two types both involve the Data Analysis Engine, the Data Analysis Tool, the
Message Bus and the Analysis Result repository. However, batch tasks are performed on data
coming from the Measurement Repository whereas streaming tasks are performed on real time
data coming directly from the drones through the Message Bus. In other words, the difference
between the two types relies on what kind of data the task is performed on, streams or batches. If
they are not interrupted, by the occurrence of an error or stopped manually by the user, streaming
tasks run indefinitely. Batch tasks however end when the data structure has been covered (the
number of time an algorithm pass through the fixed-size dataset is a user-defined parameter).

The following sequence diagram corresponds to a use-case in which a user conducts a streaming
data analysis task:

1. The user defines the data analysis task to run through the data Analysis Tool. He specifies
the schemas associated with the data he wants to run computations on via simple
Message Bus query (schema registry more precisely)

2. The Tool relays the task creation order to the Data Analysis Engine which initiate the
task.

3. The Engine computes sequentially on the most recently added data on the stream that is
retrieved from the Message Bus.

4. In the absence of computation error, the computation is interrupted if and only if the user
sends a kill signal from the Tool.

5. The results can be visualised through the Tool which integrates the dashboard associated
with the Analysis Results Repository. Such a visualisation can be done at any time during
the computation, the task does not need to be over in order to see the results, which is
crucial in streaming applications other the task would have to be interrupted to see the
results).

 D4.5 - Design and Specification of RAWFIE Components (b)

148

Figure 85: Sequence Diagram for the “Data Analysis in a streaming scenario” process

As for batch task (below), the synopsis differs in the following aspects:

1. Data is from the Measurement Repository, not from the Message Bus.
2. The task ends, it is not tied to an infinite stream of data.

Figure 86: Sequence Diagram for the “Data Analysis in a batch scenario” process

 D4.5 - Design and Specification of RAWFIE Components

149

6 Summary and Outlook
The design proposed into this document provides concepts that may be adopted for the physical
deployment of the RAWFIE platform from a physical, cloud oriented standpoint (physical
infrastructure), in Section 3. It also provides instructions on how the several software
components needs be deployed within different servers, together with the base technologies
(Java, Tomcat, etc.) used for the software execution environments, in the 2nd version of the
prototype (Section 3 and 4).
The mapping of the requirements identified in D3.2, with the needed software components
functionalities, was the starting point to provide a detailed design of all software components and
their interfaces from a development and operational perspective (Section 4).
This detailed design will be adopted as the starting point for the 2nd implementation cycle,
whereas the information flows for some of the most relevant use cases highlighted in Section 5,
will be the basis for the new comprehensive tests on components functionalities and interfaces.

 D4.5 - Design and Specification of RAWFIE Components

150

7 References
 http://geoserver.org/
 http://docs.confluent.io/3.0.0/
 http://kafka.apache.org/
 https://en.wikipedia.org/wiki/NoSQL
 tomcat.apache.org
 https://forgerock.org/opendj/
 http://www.icinga.org/
 http://www.jnrpe.it/
 http://www.nagios.org/
 http://mathias-kettner.com/checkmk_livestatus.html
 G. Cugola and M. Migliavacca, “A Context and Content-Based Routing Protocol for

Mobile Sensor Networks”, Proc. European Conf. Wireless Sensor Networks, pp. 69-
85, 2009.

8 Annex

8.1 Abbreviations
Abbreviation Meaning
3D three-dimensional space
ACL Access Control List
AGL Above Ground Level
AHRS Attitude and Heading Reference System
AJAX Asynchronous JavaScript and XML
AM Aggregate Manager (of SFA)
AP Access Point
API Application Programming Interface
API Application programming interface
AT Aerial Testbed
AUV Autonomous underwater vehicle
B-VLOS Beyond Visual Line Of Sight
CA Certification Authority
CAA Civil Aviation Authority
CAO Cognitive Adaptive Optimization
CBNR Chemical Biological Nuclear Radiological
CEP Circular Error Probability
CPU Central Processing Unit
CSR Certificate Signing Request
DETEC Department of the Environment, Transport, Energy and Communication
DGCA Directorate General of Civil Aviation
DoA Description of Actions
EASA European Aviation Safety Agency
EC Experiment Controller
ECC Error Correction Code
ECV EDL Compiler & Validator
EDL Experiment Description Language

 D4.5 - Design and Specification of RAWFIE Components

151

EDL Experiment Description Language
EER Experiment and EDL Repository
EU European Union
E-VLOS Extended Visual Line Of Sight
EVS Experiment Validation Service
FIRE Future Internet Research & Experimentation
FOCA Federal Office of Civil Aviation
FPS Frames Per Second
FPV First Person View
GAA German Aviation Act
GIS Geographic Information System
GNSS Global Navigation Satellite System
GPIO General Purpose Input/Output
GPS Global Positioning System
GUI Graphical user interface
HD High Definition
HTTP Hypertext Transfer Protocol
HW Hardware
IAA Irish Aviation Authority
IaaS Infrastructure as a Service
IDE Integrated Development Environment
IDE integrated development environment
IFR Instrument Flight Rules
IP Internet Protocol
ISO International Standards Organization
JDBC Java Database Connectivity
JSON JavaScript Object Notation
KPI Key Performance Indicator
KPI Key Performance Indicator
LBL Long Baseline
LDAP Lightweight Directory Access Protocol
LS Launching Service
MEMS MicroElectroMechanical System
MM Monitoring Manager
MSO Multi Swarm Optimization
MT Maritime Testbed
MOM Message Oriented Middleware
MVC Model View Controller
NAT Network Address Translation
NC Network Controller
NF Non Functional
ODBC Open Database Connectivity
OEDL OMF EDL
OMF cOntrol and Management Framework
OMF Orbit Management Framework
OML ORBIT Measurement Library
OS Operating System
OTA Over The Air
P2P Point to Point

 D4.5 - Design and Specification of RAWFIE Components

152

PSO Particle Swarm Optimization
PTZ Pan Tilt Zoom
RC Resource Controller
RC Resource Controller
RE Requirement Engineering
REST Representational state transfer
RIA Research and Innovation Action
ROS Robot Operating System
ROV Remotely Operated Vehicle
RPA Remotely Piloted Aircraft
RPAS Remotely Piloted Aircraft System
RPS Remotely Piloted Station
RSpec SFA Resource Specification
SaaS Software as a Service
SAML Security Assertion Markup Language
SFA Slice-based Federation Architecture
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Simple Query Language
SSO Single-Sign-On
SVN Apache Subversion
TM Testbed Manager
TMS Testbed Manager Suite
TP Testbed Proxy
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
UI User Interface
UML Unified Modelling Language
USV Unmanned Surface Vehicle
UUV Unmanned Underwater Vehicle
UxV Unmanned aerial/ground/surface/underwater Vehicle
VE Visualization Engine
VT Vehicular Testbed
VT Visualization Tool
WCS Web Coverage Service
WFS Web Feature Service
WMS Web Map Service
WPS Web Processing Service
WSDL Web Services Description Language
XMPP Extensible Messaging and Presence Protocol

8.2 Glossary

A
Accounting Service

 D4.5 - Design and Specification of RAWFIE Components

153

RAWFIE component. Component that keeps track of resources usage by individual users.

Aggregate Manager

Slice Federation Architecture (SFA) term. The Aggregate Manager API is the interface by
which experimenters discover, reserve and control resources at resource providers.

Avro
Apache Avro: a remote procedure call and data serialization framework

B
Booking Service

RAWFIE component. The Booking Service manages bookings of resources by registering
data to appropriate database tables.

Booking Tool
RAWFIE component. The Booking tool will provide the appropriate Web UI interface for the
experimenter to discover available resources and reserve them for a specified period.

C
Common Testbed Interface

RAWFIE component. The set of software and hardware functionalities each Testbed provider
should ensure, for the communication with Middle Tier software components of RAWFIE,
therefore for the integration with the RAWFIE platform

Component

A reusable entity that provides a set of functionalities (or data) semantically related. A
component may encapsulate one or more modules (see definition) and should provide a well
defined API for interaction

D
Data Analysis Engine

RAWFIE component. The Data Analysis Engine enables the execution of data processing
jobs by sending requests to a processing engine which will perform the computations
specified when the analytical task was defined through the Data Analysis Tool to be
transmitted to the processing engine for execution.

Data Analysis Tool

 D4.5 - Design and Specification of RAWFIE Components

154

RAWFIE component. The Data Analysis Tool enables the user to browse available data
sources for subject to analytical treatment as well as previous analysis tasks' outcomes.

E
EDL Compiler & Validator

RAWFIE component. The EDL validator will be responsible for performing syntactic and
semantic analysis on the provided EDL scripts.

Experiment Authoring Tool
RAWFIE component. This component is actually a collection of tools for defining
experiments and authoring EDL scripts through RAWFIE web portal. It will provide features
to handle resource requirements/configuration, location/topology information, task description
etc.

Experiment Controller

RAWFIE component. The Experiment Controller is a service placed in the Middle tier and is
responsible to monitor the smooth execution of each experiment. The main task of the
experiment controller is the monitoring of the experiment execution while acting as ‘broker’
between the experimenter and the resources.

Experiment Monitoring Tool
RAWFIE component. Shows the status of experiments and of the resources used by
experiments.

Experiment Validation Service

RAWFIE component. The Experiment Validation Service will be responsible to validate
every experiment as far as execution issues concern.

M
Master Data Repository

RAWFIE component. Repository that stores all main entities that are needed in the RAWFIE
platforms. Is an SQL-database

Measurements Repository

RAWFIE component. Stores the raw measurements from the experiments

Message Bus

Also known as Message Oriented Middleware. A message bus is supports sending and
receiving messages between distributed systems. It is used in RAWFIE across all tiers to

 D4.5 - Design and Specification of RAWFIE Components

155

enable asynchronous, event-based messaging between heterogeneous components.
Implements the Publish/Subscribe paradigm.

Module
A set of code packages within one software product that provides a special functionality

Monitoring Manager
RAWFIE component. Monitors the status of the testbed and the UxVs belonging to it, at
functional level, e.g. the ‘health of the devices’ and current activity.

N
Network Controller

Manages the network connections and the switching between different technologies in the
testbed in order to offer seamless connectivity in the operations of the system.

L
Launching Service

RAWFIE component. The Launching Service is responsible for handling requests for starting
or cancellation of experiments.

R
Resource Controller

RAWFIE component. The Resource Controller can be considered as a cloud robot and
automation system and ensures the safe and accurate guidance of the UxVs.

Resource Explorer Tool
RAWFIE component. The experimenter can discover and select available testbeds as well as
resources/UxVs inside a testbed with this tool. Administrators can manage the data.

Results Repository

RAWFIE component. Stores the results of data analyses.

Resource Specification (RSpec)

SFA term. This is the means that the SFA uses for describing resources, resource requests,
and reservations (declaring which resources a user wants on each Aggregate).

 D4.5 - Design and Specification of RAWFIE Components

156

S
Schema Registry

A schema registry is a central service where data schemas are uploaded to. As an added
benefit each schema has versions with it can convert allowable formats to other ones (e.g.:
float to double) It maintains schemas for the data transferred and keeps revisions to be able to
upgrade the definitions as with the simple field conversion. Used in RAWFIE for messages on
the message bus.

Service

A component that is running in the system, providing specific functionalities and accessible
via a well known interface.

Slice Federation Architecture (SFA)
SFA is the de facto standard for testbed federation and is a secure, distributed and scalable
narrow waist of functionality for federating heterogeneous testbeds.

Subsystem

A collection of components providing a subset of the system functionalities.

System

A collection of subsystems and/or individual components representing the provided software
solution as a whole.

System Monitoring Service
RAWFIE component. Checks readiness of main components and ensure that all critical
software modules will perform at optimum levels. Predefined notification are triggered
whenever the corresponding conditions are met, or whenever thresholds are reached

System Monitoring Tool
RAWFIE component. Shows the status and the readiness of the various RAWFIE services
and testbed

T
Testbed

A testbed is a platform for conducting rigorous, transparent, and replicable testing of scientific
theories, computational tools, and new technologies.

In the context of RAWFIE, a testbed or testbed facility is a physical building or area where
UxVs can move around to execute some experiments. In addition, the UxVs are stored in or
near the testbed.

 D4.5 - Design and Specification of RAWFIE Components

157

Testbeds Directory Service
RAWFIE component. Represents a registry service of the middleware tier where all the
integrated testbeds and resources accessible from the federated facilities are listed, belonging
to the RAWFIE federation.

Testbed Manager
RAWFIE component. Contains accumulated information about the UxVs resources and the
experiments of each one of the federation testbeds.

Tool

A GUI implementation to do a special thing, e.g. the “Resource Explorer tool” to search for a
resource

U
Users & Rights Repository

RAWFIE component. Management of users and their roles. Is a directory services (LDAP).

Users & Rights Service

RAWFIE component. Manages all the users, roles and rights in the system.

UxV

The generic term for unmanned vehicle. In RAWFIE, it can be either:
USV - Unmanned Surface vehicle.

UAV - Unmanned Aerial vehicle.
UGV - Unmanned Ground vehicle.

UUV - Unmanned Underwater vehicle.

UxV Navigation Tool

RAWFIE component. This component will provide to the user the ability to (near) real-time
remotely navigate a squad of UxVs.

UxV node
RAWFIE component. A single UxV node. The UxV is a complete mobile system that
interacts with the other Testbed entities. It can be remotely controlled or able to act and move
autonomously.

V

 D4.5 - Design and Specification of RAWFIE Components

158

Visualisation Engine
RAWFIE component. Used for providing the necessary information to the Visualisation tool,
to communicate with the other components, to handle geospatial data, to retrieve data for
experiments from the database, to load and store user settings and to forward them to the
visualisation tool.

Visualisation Tool

RAWFIE component. Visualisation of an ongoing experiment as well as visualisation of
experiments that are already finished

W
Web Portal

RAWFIE component. The central user interface that provides access to most of the RAWFIE
tools/services and available documentation.

Wiki Tool
RAWFIE component. Provides documentation and tutorials to the users of the platform.

